This book presents a detailed and mostly elementary exposition of the generalized Riemann-Stieltjes integrals discovered by Henstock, Kurzweil, and McShane. Along with the classical results, it contains some recent developments connected with lipeomorphic change of variables and the divergence theorem for discontinuously differentiable vector fields.
This book presents a detailed and mostly elementary exposition of the generalized Riemann-Stieltjes integrals discovered by Henstock, Kurzweil, and Mc...
Matrix positivity is a central topic in matrix theory: properties that generalize the notion of positivity to matrices arose from a large variety of applications, and many have also taken on notable theoretical significance, either because they are natural or unifying. This is the first book to provide a comprehensive and up-to-date reference of important material on matrix positivity classes, their properties, and their relations. The matrix classes emphasized in this book include the classes of semipositive matrices, P-matrices, inverse M-matrices, and copositive matrices. This...
Matrix positivity is a central topic in matrix theory: properties that generalize the notion of positivity to matrices arose from a large variety of a...
This monograph is the first to present the theory of global attractors of Hamiltonian partial differential equations. A particular focus is placed on the results obtained in the last three decades, with chapters on the global attraction to stationary states, to solitons, and to stationary orbits. The text includes many physically relevant examples and will be of interest to graduate students and researchers in both mathematics and physics. The proofs involve novel applications of methods of harmonic analysis, including Tauberian theorems, Titchmarsh's convolution theorem, and the theory of...
This monograph is the first to present the theory of global attractors of Hamiltonian partial differential equations. A particular focus is placed on ...
This book provides a general framework for doing geometric group theory for many non-locally-compact topological transformation groups that arise in mathematical practice, including homeomorphism and diffeomorphism groups of manifolds, isometry groups of separable metric spaces and automorphism groups of countable structures. Using Roe's framework of coarse structures and spaces, the author defines a natural coarse geometric structure on all topological groups. This structure is accessible to investigation, especially in the case of Polish groups, and often has an explicit description,...
This book provides a general framework for doing geometric group theory for many non-locally-compact topological transformation groups that arise in m...
Point-counting results for sets in real Euclidean space have found remarkable applications to diophantine geometry, enabling significant progress on the André–Oort and Zilber–Pink conjectures. The results combine ideas close to transcendence theory with the strong tameness properties of sets that are definable in an o-minimal structure, and thus the material treated connects ideas in model theory, transcendence theory, and arithmetic. This book describes the counting results and their applications along with their model-theoretic and transcendence connections. Core results are presented...
Point-counting results for sets in real Euclidean space have found remarkable applications to diophantine geometry, enabling significant progress on t...