The subject of special functions is often presented as a collection of disparate results, rarely organized in a coherent way. This book emphasizes general principles that unify and demarcate the subjects of study. The authors' main goals are to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more. It shows how much of the subject can be traced back to two equations - the hypergeometric equation and confluent hypergeometric equation - and it details the ways in which these equations are...
The subject of special functions is often presented as a collection of disparate results, rarely organized in a coherent way. This book emphasizes gen...
A rigorous but accessible introduction to the mathematical theory of the three-dimensional Navier Stokes equations, this book provides self-contained proofs of some of the most significant results in the area, many of which can only be found in research papers. Highlights include the existence of global-in-time Leray Hopf weak solutions and the local existence of strong solutions; the conditional local regularity results of Serrin and others; and the partial regularity results of Caffarelli, Kohn, and Nirenberg. Appendices provide background material and proofs of some 'standard results' that...
A rigorous but accessible introduction to the mathematical theory of the three-dimensional Navier Stokes equations, this book provides self-contained ...
Thanks to the driving forces of the Ito calculus and the Malliavin calculus, stochastic analysis has expanded into numerous fields including partial differential equations, physics, and mathematical finance. This book is a compact, graduate-level text that develops the two calculi in tandem, laying out a balanced toolbox for researchers and students in mathematics and mathematical finance. The book explores foundations and applications of the two calculi, including stochastic integrals and differential equations, and the distribution theory on Wiener space developed by the Japanese school of...
Thanks to the driving forces of the Ito calculus and the Malliavin calculus, stochastic analysis has expanded into numerous fields including partial d...
K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi-Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived...
K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi-Yau manifolds from various perspective...
Representation theory of big groups is an important and quickly developing part of modern mathematics, giving rise to a variety of important applications in probability and mathematical physics. This book provides the first concise and self-contained introduction to the theory on the simplest yet very nontrivial example of the infinite symmetric group, focusing on its deep connections to probability, mathematical physics, and algebraic combinatorics. Following a discussion of the classical Thoma's theorem which describes the characters of the infinite symmetric group, the authors describe...
Representation theory of big groups is an important and quickly developing part of modern mathematics, giving rise to a variety of important applicati...
This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked...
This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanc...