Many applications in science and engineering require a digital model of a real physical object. Advanced scanning technology has made it possible to scan such objects and generate point samples on their boundaries. This book, first published in 2007, shows how to compute a digital model from this point sample. After developing the basics of sampling theory and its connections to various geometric and topological properties, the author describes a suite of algorithms that have been designed for the reconstruction problem, including algorithms for surface reconstruction from dense samples, from...
Many applications in science and engineering require a digital model of a real physical object. Advanced scanning technology has made it possible to s...
Mixing processes occur in many technological and natural applications, with length and time scales ranging from the very small to the very large. The diversity of problems can give rise to a diversity of approaches. Are there concepts that are central to all of them? Are there tools that allow for prediction and quantification? The authors show how a variety of flows in very different settings possess the characteristic of streamline crossing. This notion can be placed on firm mathematical footing via Linked Twist Maps (LTMs), which is the central organizing principle of this book. The...
Mixing processes occur in many technological and natural applications, with length and time scales ranging from the very small to the very large. The ...
A comprehensive, up-to-date, and accessible introduction to the numerical solution of a large class of integral equations, this book builds an important foundation for the numerical analysis of these equations. It provides a general framework for the degenerate kernel, projection, and Nystrom methods and includes an introduction to the numerical solution of boundary integral equations (also known as boundary element methods). It is an excellent resource for graduate students and researchers trying to solve integral equation problems and for engineers using boundary element methods.
A comprehensive, up-to-date, and accessible introduction to the numerical solution of a large class of integral equations, this book builds an importa...
It is necessary to estimate parameters by approximation and interpolation in many areas-from computer graphics to inverse methods to signal processing. Radial basis functions are modern, powerful tools which are being used more widely as the limitations of other methods become apparent. Martin Buhmann provides a complete analysis of radial basic functions from the theoretical and practical implementation viewpoints. He also includes a comprehensive bibliography.
It is necessary to estimate parameters by approximation and interpolation in many areas-from computer graphics to inverse methods to signal processing...
This volume generalizes the classical theory of orthogonal polynomials on the complex unit circle or on the real line to orthogonal rational functions whose poles are among a prescribed set of complex numbers. The first part treats the case where these poles are all outside the unit disk or in the lower half plane. Classical topics such as recurrence relations, numerical quadrature, interpolation properties, Favard theorems, convergence, asymptotics, and moment problems are generalized and treated in detail. The same topics are discussed for a different situation where the poles are located...
This volume generalizes the classical theory of orthogonal polynomials on the complex unit circle or on the real line to orthogonal rational functions...
Many practical applications require the reconstruction of a multivariate function from discrete, unstructured data. This book gives a self-contained, complete introduction into this subject. It concentrates on truly meshless methods such as radial basis functions, moving least squares, and partitions of unity. The book starts with an overview on typical applications of scattered data approximation, coming from surface reconstruction, fluid-structure interaction, and the numerical solution of partial differential equations. It then leads the reader from basic properties to the current state of...
Many practical applications require the reconstruction of a multivariate function from discrete, unstructured data. This book gives a self-contained, ...
The primary goal of numerical simulation of compressible, inviscid time-dependent flow is to represent the time evolution of complex flow patterns. Developed by Matania Ben-Artzi and Joseph Falcovitz, the Generalized Riemann Problem (GRP) algorithm comprises some of the most commonly used numerical schemes of this process. This monograph presents the GRP methodology ranging from underlying mathematical principles through basic scheme analysis and scheme extensions. The book is intended for researchers and graduate students of applied mathematics, science and engineering.
The primary goal of numerical simulation of compressible, inviscid time-dependent flow is to represent the time evolution of complex flow patterns. De...
Modern Computer Arithmetic focuses on arbitrary-precision algorithms for efficiently performing arithmetic operations such as addition, multiplication and division, and their connections to topics such as modular arithmetic, greatest common divisors, the Fast Fourier Transform (FFT), and the computation of elementary and special functions. Brent and Zimmermann present algorithms that are ready to implement in your favorite language, while keeping a high-level description and avoiding too low-level or machine-dependent details. The book is intended for anyone interested in the design and...
Modern Computer Arithmetic focuses on arbitrary-precision algorithms for efficiently performing arithmetic operations such as addition, multiplication...
Many applications in science and engineering require a digital model of a real physical object. Advanced scanning technology has made it possible to scan such objects and generate point samples on their boundaries. This book, first published in 2007, shows how to compute a digital model from this point sample. After developing the basics of sampling theory and its connections to various geometric and topological properties, the author describes a suite of algorithms that have been designed for the reconstruction problem, including algorithms for surface reconstruction from dense samples, from...
Many applications in science and engineering require a digital model of a real physical object. Advanced scanning technology has made it possible to s...
This first book on greedy approximation gives a systematic presentation of the fundamental results. It also contains an introduction to two hot topics in numerical mathematics: learning theory and compressed sensing. Nonlinear approximation is becoming increasingly important, especially since two types are frequently employed in applications: adaptive methods are used in PDE solvers, while m-term approximation is used in image/signal/data processing, as well as in the design of neural networks. The fundamental question of nonlinear approximation is how to devise good constructive methods...
This first book on greedy approximation gives a systematic presentation of the fundamental results. It also contains an introduction to two hot topics...