Computational Aeroacoustics (CAA) is a relatively new research area. CAA algorithms have developed rapidly and the methods have been applied in many areas of aeroacoustics. The objective of CAA is not simply to develop computational methods but also to use these methods to solve practical aeroacoustics problems and to perform numerical simulation of aeroacoustic phenomena. By analyzing the simulation data, an investigator can determine noise generation mechanisms and sound propagation processes. This is both a textbook for graduate students and a reference for researchers in CAA and as such...
Computational Aeroacoustics (CAA) is a relatively new research area. CAA algorithms have developed rapidly and the methods have been applied in many a...
Aircraft Design explores fixed winged aircraft design at the conceptual phase of a project. Designing an aircraft is a complex multifaceted process embracing many technical challenges in a multidisciplinary environment. By definition, the topic requires intelligent use of aerodynamic knowledge to configure aircraft geometry suited specifically to the customer's demands. It involves estimating aircraft weight and drag and computing the available thrust from the engine. The methodology shown here includes formal sizing of the aircraft, engine matching, and substantiating performance to comply...
Aircraft Design explores fixed winged aircraft design at the conceptual phase of a project. Designing an aircraft is a complex multifaceted process em...
This book is intended for advanced undergraduate and graduate students in mechanical and aerospace engineering taking a course commonly called Principles of Turbomachinery or Aerospace Propulsion. It begins with a review of basic thermodynamics and fluid mechanics principles to motivate their application to aerothermodynamics and real-life design issues. This approach is ideal for the reader who will face practical situations and design decisions in the gas turbine industry. Among the features of the book are: * An emphasis on the role of entropy in assessing machine performance * A timely...
This book is intended for advanced undergraduate and graduate students in mechanical and aerospace engineering taking a course commonly called Princip...
This text covers fundamentals used in the navigation and guidance of modern aerospace vehicles, in both atmospheric and space flight. It can be used as a textbook supporting a graduate level course on aerospace navigation and guidance, a guide for self-study, or a resource for practicing engineers and researchers. It begins with an introduction that discusses why navigation and guidance ought to be considered together and delineates the class of systems of interest in navigation and guidance. The book then presents the necessary fundamentals in deterministic and stochastic systems theory and...
This text covers fundamentals used in the navigation and guidance of modern aerospace vehicles, in both atmospheric and space flight. It can be used a...
This computational aerodynamics textbook is written at the undergraduate level, based on years of teaching focused on developing the engineering skills required to become an intelligent user of aerodynamic codes. This is done by taking advantage of CA codes that are now available and doing projects to learn the basic numerical and aerodynamic concepts required. This book includes a number of unique features to make studying computational aerodynamics more enjoyable. These include: The computer programs used in the book's projects are all open source and accessible to students and practicing...
This computational aerodynamics textbook is written at the undergraduate level, based on years of teaching focused on developing the engineering skill...
The advent of supercomputers has brought computational fluid dynamics (CFD) to the forefront as a tool to analyze increasingly complex simulation scenarios in many fields. Computational aerodynamics problems are also increasingly moving towards being coupled, multi-physics and multi-scale with complex, moving geometries. The latter presents severe geometry handling and meshing challenges. Simulations also frequently use formal design optimization processes. This book explains the evolution of CFD and provides a comprehensive overview of the plethora of tools and methods available for solving...
The advent of supercomputers has brought computational fluid dynamics (CFD) to the forefront as a tool to analyze increasingly complex simulation scen...
This current and comprehensive book provides an updated treatment of molecular gas dynamics topics for aerospace engineers, or anyone researching high-temperature gas flows for hypersonic vehicles and propulsion systems. It demonstrates how the areas of quantum mechanics, kinetic theory, and statistical mechanics can combine in order to facilitate the study of nonequilibrium processes of internal energy relaxation and chemistry. All of these theoretical ideas are used to explain the direct simulation Monte Carlo (DSMC) method, a numerical technique based on molecular simulation. Because this...
This current and comprehensive book provides an updated treatment of molecular gas dynamics topics for aerospace engineers, or anyone researching high...