This book places thermodynamics on a system-theoretic foundation so as to harmonize it with classical mechanics. Using the highest standards of exposition and rigor, the authors develop a novel formulation of thermodynamics that can be viewed as a moderate-sized system theory as compared to statistical thermodynamics. This middle-ground theory involves deterministic large-scale dynamical system models that bridge the gap between classical and statistical thermodynamics.
The authors' theory is motivated by the fact that a discipline as cardinal as thermodynamics--entrusted with...
This book places thermodynamics on a system-theoretic foundation so as to harmonize it with classical mechanics. Using the highest standards of exp...
Continuum Models for Phase Transitions and Twinning in Crystals presents the fundamentals of a remarkably successful approach to crystal thermomechanics. Developed over the last two decades, it is based on the mathematical theory of nonlinear thermoelasticity, in which a new viewpoint on material symmetry, motivated by molecular theories, plays a central role. This is the first organized presentation of a nonlinear elastic approach to twinning and displacive phase transition in crystalline solids. The authors develop geometry, kinematics, and energy invariance in crystals in strong...
Continuum Models for Phase Transitions and Twinning in Crystals presents the fundamentals of a remarkably successful approach to crystal thermomechani...
Current standard numerical methods are of little use in solving mathematical problems involving boundary layers. In Robust Computational Techniques for Boundary Layers, the authors construct numerical methods for solving problems involving differential equations that have non-smooth solutions with singularities related to boundary layers. They present a new numerical technique that provides precise results in the boundary layer regions for the problems discussed in the book. They show that this technique can be adapted in a natural way to a real flow problem, and that it can be used to...
Current standard numerical methods are of little use in solving mathematical problems involving boundary layers. In Robust Computational Techniques fo...
The prolonged boom in the US and European stock markets has led to increased interest in the mathematics of security markets, most notably in the theory of stochastic integration. This text gives a rigorous development of the theory of stochastic integration as it applies to the valuation of derivative securities. It includes all the tools necessary for readers to understand how the stochastic integral is constructed with respect to a general continuous martingale. The author develops the stochastic calculus from first principles, but at a relaxed pace that includes proofs that are...
The prolonged boom in the US and European stock markets has led to increased interest in the mathematics of security markets, most notably in the theo...
The book combines both rigor and intuition to derive most of the classical results of linear and nonlinear filtering and beyond. Many fundamental results recently discovered by the author are included. Furthermore, many results that have appeared in recent years in the literature are also presented. The most interesting feature of the book is that all the derivations of the linear filter equations given in Chapters 3-11, beginning from the classical Kalman filter presented in Chapters 3 and 5, are based on one basic principle which is fully rigorous but also very intuitive and easily...
The book combines both rigor and intuition to derive most of the classical results of linear and nonlinear filtering and beyond. Many fundamental resu...
Exact eigenvalues, eigenvectors, and principal vectors of operators with infinite dimensional ranges can rarely be found. Therefore, one must approximate such operators by finite rank operators, then solve the original eigenvalue problem approximately. Serving as both an outstanding text for graduate students and as a source of current results for research scientists, Spectral Computations for Bounded Operators addresses the issue of solving eigenvalue problems for operators on infinite dimensional spaces. From a review of classical spectral theory through concrete approximation...
Exact eigenvalues, eigenvectors, and principal vectors of operators with infinite dimensional ranges can rarely be found. Therefore, one must approxim...
Clear, rigorous, and intuitive, Markov Processes provides a bridge from an undergraduate probability course to a course in stochastic processes and also as a reference for those that want to see detailed proofs of the theorems of Markov processes. It contains copious computational examples that motivate and illustrate the theorems. The text is designed to be understandable to students who have taken an undergraduate probability course without needing an instructor to fill in any gaps.
The book begins with a review of basic probability, then covers the case of finite state,...
Clear, rigorous, and intuitive, Markov Processes provides a bridge from an undergraduate probability course to a course in stochastic proce...
Since publication of the first edition over a decade ago, Green's Functions with Applications has provided applied scientists and engineers with a systematic approach to the various methods available for deriving a Green's function. This fully revised Second Edition retains the same purpose, but has been meticulously updated to reflect the current state of the art.
The book opens with necessary background information: a new chapter on the historical development of the Green's function, coverage of the Fourier and Laplace transforms, a discussion of the classical...
Since publication of the first edition over a decade ago, Green's Functions with Applications has provided applied scientists and engineers ...