This book discusses numerical methods for solving time-fractional evolution equations. The approach is based on first discretizing in the spatial variables by the Galerkin finite element method, using piecewise linear trial functions, and then applying suitable time stepping schemes, of the type either convolution quadrature or finite difference. The main concern is on stability and error analysis of approximate solutions, efficient implementation and qualitative properties, under various regularity assumptions on the problem data, using tools from semigroup theory and Laplace transform. The...
This book discusses numerical methods for solving time-fractional evolution equations. The approach is based on first discretizing in the spatial vari...
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools...
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to pa...
The first edition of this book was published in 1994. Since then considerable progress has been made in both theoretical developments of percolation theory, and in its applications. The 2nd edition of this book is a response to such developments. Not only have all of the chapters of the 1st edition been completely rewritten, reorganized, and updated all the way to 2022, but also 8 new chapters have been added that describe extensive new applications, including biological materials, networks and graphs, directed percolation, earthquakes, geochemical processes, and large-scale real world...
The first edition of this book was published in 1994. Since then considerable progress has been made in both theoretical developments of percolation t...
This monograph is devoted to the study of multiscale model reduction methods from the point of view of multiscale finite element methods.Multiscale numerical methods have become popular tools for modeling processes with multiple scales. These methods allow reducing the degrees of freedom based on local offline computations. Moreover, these methods allow deriving rigorous macroscopic equations for multiscale problems without scale separation and high contrast. Multiscale methods are also used to design efficient solvers.This book offers a combination of analytical and numerical methods...
This monograph is devoted to the study of multiscale model reduction methods from the point of view of multiscale finite element methods.Multiscale nu...
This is a book on optimal control problems (OCPs) for partial differential equations (PDEs) that evolved from a series of courses taught by the authors in the last few years at Politecnico di Milano, both at the undergraduate and graduate levels. The book covers the whole range spanning from the setup and the rigorous theoretical analysis of OCPs, the derivation of the system of optimality conditions, the proposition of suitable numerical methods, their formulation, their analysis, including their application to a broad set of problems of practical relevance.The first introductory chapter...
This is a book on optimal control problems (OCPs) for partial differential equations (PDEs) that evolved from a series of courses taught by the author...