..". Many parts of the book can be read by anyone with a basic abstract algebra course... it was one of the author's intentions to equip students who are interested in computational problems with the necessary algebraic background in pure mathematics and to encourage them to do further research in commutative algebra and algebraic geometry. But researchers will also benefit from this exposition. They will find an up-to-date description of the related research ... The reviewer recommends the book to anybody who is interested in commutative algebra and algebraic...
From the reviews:
..". Many parts of the book can be read by anyone with a basic abstract algebra course... it was one of the author's inte...
This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic systems. It presents the state of the art in several symbolic, numeric, and symbolic-numeric techniques, including effective and algorithmic methods in algebraic geometry and computational algebra, complexity issues, and applications ranging from statistics and geometric modelling to robotics and vision.Graduate students, as well as researchers in related areas, will find an excellent introduction to currently interesting topics. These cover Groebner and...
This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic systems. ...
The fascinating theory of error-correcting codes is a rather new addition to the list of mathematical disciplines. It grew out of the need to communicate information electronically, and is currently no more than 60 years old. - ing an applied discipline by de?nition, a surprisingly large number of pure mathematical areas tie into Coding Theory. If one were to name just the most important connections, one would start of course with Linear Algebra, then list Algebra and Combinatorics, and further mention Number Theory and - ometry as well as Algebraic Geometry. Being a thorough introduction to...
The fascinating theory of error-correcting codes is a rather new addition to the list of mathematical disciplines. It grew out of the need to communic...
This comprehensive book covers both long-standing results in the theory of polynomials and recent developments which have until now only been available in the research literature. After initial chapters on the location and separation of roots and on irreducibility criteria, the book covers more specialized polynomials, including those which are symmetric, integer-value or cyclotomic, and those of Chebyshev and Bernoulli. There follow chapters on Galois theory and ideals in polynomial rings. Finally there is a detailed discussion of Hilbert's 17th problem on the representation of...
This comprehensive book covers both long-standing results in the theory of polynomials and recent developments which have until now only been avail...
From the reviews: "This is a textbook in cryptography with emphasis on algebraic methods. It is supported by many exercises (with answers) making it appropriate for a course in mathematics or computer science. ...] Overall, this is an excellent expository text, and will be very useful to both the student and researcher." Mathematical Reviews
From the reviews: "This is a textbook in cryptography with emphasis on algebraic methods. It is supported by many exercises (with answers) making i...
This comprehensive book covers both long-standing results in the theory of polynomials and recent developments which have until now only been available in the research literature. After initial chapters on the location and separation of roots and on irreducibility criteria, the book covers more specialized polynomials, including those which are symmetric, integer-value or cyclotomic, and those of Chebyshev and Bernoulli. There follow chapters on Galois theory and ideals in polynomial rings. Finally there is a detailed discussion of Hilbert's 17th problem on the representation of...
This comprehensive book covers both long-standing results in the theory of polynomials and recent developments which have until now only been avail...
Ergodic theory is hard to study because it is based on measure theory, which is a technically difficult subject to master for ordinary students, especially for physics majors. Many of the examples are introduced from a different perspective than in other books and theoretical ideas can be gradually absorbed while doing computer experiments. Theoretically less prepared students can appreciate the deep theorems by doing various simulations. The computer experiments are simple but they have close ties with theoretical implications. Even the researchers in the field can benefit by checking...
Ergodic theory is hard to study because it is based on measure theory, which is a technically difficult subject to master for ordinary students, es...
The algorithmic problems of real algebraic geometry such as real root counting, deciding the existence of solutions of systems of polynomial equations and inequalities, finding global maxima or deciding whether two points belong in the same connected component of a semi-algebraic set appear frequently in many areas of science and engineering. In this textbook the main ideas and techniques presented form a coherent and rich body of knowledge.
Mathematicians will find relevant information about the algorithmic aspects. Researchers in computer science and engineering will find the...
The algorithmic problems of real algebraic geometry such as real root counting, deciding the existence of solutions of systems of polynomial equati...
In the years 1994, 1995, two EIDMA mini courses on Computer Algebra were given at the Eindhoven University of Technology by, apart from ourselves, various invited lecturers. (EIDMA is the Research School 'Euler Institute for Discrete Mathematics and its Applications'.) The idea of the courses was to acquaint young mathematicians with algorithms and software for mathemat ical research and to enable them to incorporate algorithms in their research. A collection of lecture notes was used at these courses. When discussing these courses in comparison with other kinds of courses one might give in a...
In the years 1994, 1995, two EIDMA mini courses on Computer Algebra were given at the Eindhoven University of Technology by, apart from ourselves, var...
One of the most remarkable and beautiful theorems in coding theory is Gleason's 1970 theorem about the weight enumerators of self-dual codes and their connections with invariant theory, which has inspired hundreds of papers about generalizations and applications of this theorem to different types of codes. This self-contained book develops a new theory which is powerful enough to include all the earlier generalizations.
One of the most remarkable and beautiful theorems in coding theory is Gleason's 1970 theorem about the weight enumerators of self-dual codes and th...