This book deals with algorithmic problems concerning binary quadratic forms 2 2 f(X, Y)= aX +bXY +cY with integer coe?cients a, b, c, the mathem- ical theories that permit the solution of these problems, and applications to cryptography. A considerable part of the theory is developed for forms with real coe?cients and it is shown that forms with integer coe?cients appear in a natural way. Much of the progress of number theory has been stimulated by the study of concrete computational problems. Deep theories were developed from the classic time of Euler and Gauss onwards to this day that made...
This book deals with algorithmic problems concerning binary quadratic forms 2 2 f(X, Y)= aX +bXY +cY with integer coe?cients a, b, c, the mathem- ical...
Among all computer-generated mathematical images, Julia sets of rational maps occupy one of the most prominent positions. Their beauty and complexity can be fascinating. They also hold a deep mathematical content.
Computational hardness of Julia sets is the main subject of this book. By definition, a computable set in the plane can be visualized on a computer screen with an arbitrarily high magnification. There are countless programs to draw Julia sets. Yet, as the authors have discovered, it is possible to constructively produce examples of quadratic polynomials, whose Julia...
Among all computer-generated mathematical images, Julia sets of rational maps occupy one of the most prominent positions. Their beauty and complexi...
As long as algebra and geometry proceeded along separate paths, their advance was slow and their applications limited. But when these sciences joined company they drew from each other fresh vitality and thenceforward marched on at rapid pace towards perfection Joseph L. Lagrange The theory of differential equations is one of the largest elds within mathematics and probably most graduates in mathematics have attended at least one course on differentialequations. But differentialequationsare also offundamentalimportance in most applied sciences; whenever a continuous process is modelled mathem-...
As long as algebra and geometry proceeded along separate paths, their advance was slow and their applications limited. But when these sciences joined ...
Symbolic asymptotics has recently undergone considerable theoretical development, especially in areas where power series are no longer an appropriate tool. Implementation is beginning to follow.
The present book, written by one of the leading specialists in the area, is currently the only one to treat this part of symbolic asymptotics. It contains a good deal of interesting material in a new, developing field of mathematics at the intersection of algebra, analysis and computing, presented in a lively and readable way. The associated areas of zero equivalence and Hardy fields are...
Symbolic asymptotics has recently undergone considerable theoretical development, especially in areas where power series are no longer an appropria...
This book presents algorithmic tools for algebraic geometry, with experimental applications. It also introduces Macaulay 2, a computer algebra system supporting research in algebraic geometry, commutative algebra, and their applications. The algorithmic tools presented here are designed to serve readers wishing to bring such tools to bear on their own problems. The first part of the book covers Macaulay 2 using concrete applications; the second emphasizes details of the mathematics.
This book presents algorithmic tools for algebraic geometry, with experimental applications. It also introduces Macaulay 2, a computer algebra syst...
This book is intended as a text for a course on cryptography with emphasis on algebraic methods. It is written so as to be accessible to graduate or advanced undergraduate students, as well as to scientists in other fields. The first three chapters form a self-contained introduction to basic concepts and techniques. Here my approach is intuitive and informal. For example, the treatment of computational complexity in Chapter 2, while lacking formalistic rigor, emphasizes the aspects of the subject that are most important in cryptography. Chapters 4-6 and the Appendix contain material that for...
This book is intended as a text for a course on cryptography with emphasis on algebraic methods. It is written so as to be accessible to graduate or a...
One of the most important and successful theories in computational complex ity is that of NP-completeness. This discrete theory is based on the Turing machine model and achieves a classification of discrete computational prob lems according to their algorithmic difficulty. Turing machines formalize al gorithms which operate on finite strings of symbols over a finite alphabet. By contrast, in algebraic models of computation, the basic computational step is an arithmetic operation (or comparison) of elements of a fixed field, for in stance of real numbers. Hereby one assumes exact arithmetic....
One of the most important and successful theories in computational complex ity is that of NP-completeness. This discrete theory is based on the Turing...
This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic systems. It presents the state of the art in several symbolic, numeric, and symbolic-numeric techniques, including effective and algorithmic methods in algebraic geometry and computational algebra, complexity issues, and applications ranging from statistics and geometric modelling to robotics and vision.
Graduate students, as well as researchers in related areas, will find an excellent introduction to currently interesting topics. These cover...
This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic system...
Among all computer-generated mathematical images, Julia sets of rational maps occupy one of the most prominent positions. Their beauty and complexity can be fascinating. They also hold a deep mathematical content.
Computational hardness of Julia sets is the main subject of this book. By definition, a computable set in the plane can be visualized on a computer screen with an arbitrarily high magnification. There are countless programs to draw Julia sets. Yet, as the authors have discovered, it is possible to constructively produce examples of quadratic polynomials, whose Julia...
Among all computer-generated mathematical images, Julia sets of rational maps occupy one of the most prominent positions. Their beauty and complexi...
Symbolic Integration I is destined to become the standard reference work in the field. Manuel Bronstein is a leading expert on this topic and his book is the first to treat the subject both comprehensively and in sufficient detail - incorporating new results along the way. The book addresses mathematicians and computer scientists interested in symbolic computation, developers and programmers of computer algebra systems as well as users of symbolic integration methods. Many algorithms are given in pseudocode ready for immediate implementation, making the book equally...
Symbolic Integration I is destined to become the standard reference work in the field. Manuel Bronstein is a leading expert on thi...