This book contains a systematic treatment of the basic principles of free elec tron laser (FEL) physics. It is primarily intended for physicists specializing in FEL physics and related fields: laser physics, microwave electronics, particle accelerator physics, etc. At the same time it might be useful for those who use the FEL as a research or industrial tool. The treatment requires that the reader has a knowledge of classical me chanics and electrodynamics. It is assumed that the reader is familiar with the kinetic theory of charged particle beams, in particular the Vlasov equa tion. All the...
This book contains a systematic treatment of the basic principles of free elec tron laser (FEL) physics. It is primarily intended for physicists speci...
Photoelectron Spectroscopy presents an up-to-date introduction to the field by comprehensively treating the electronic structures of atoms, molecules, solids, and surfaces. Brief descriptions are given of inverse photoemission, spin-polarized photoemission and photoelectron diffraction. Experimental aspects are considered throughout the book and the results are carefully interpreted in terms of the theory. A wealth of measured data is presented in tabular form for easy use by experimentalists. This new edition has been substantially updated and extended.
Photoelectron Spectroscopy presents an up-to-date introduction to the field by comprehensively treating the electronic structures ...