ISBN-13: 9783540436959 / Angielski / Twarda / 2002 / 201 str.
ISBN-13: 9783540436959 / Angielski / Twarda / 2002 / 201 str.
Authored by internationally recognized experts on optical solitons, this book addresses the forefront of technology in the important field of optical communications. It deals with topics from the motion of light waves in optical fibres to the evolution of light wavepackets, and other applications.
From the reviews of the third edition:
OPTICS & PHOTONICS NEWS
"The story of optical solitons in fibers is a wonderful example of how an abstract mathematical concept has produced a tremendous impact on real-world technology. Earlier editions of the book introduced the basic properties of optical solitons in fibers and methods of constructing all-optical transmission systems. This edition emphasizes practical issues related to applications in ultrahigh-speed communications, including information transfer, lightwave propagation in fibers, soliton control, the effects of higher order terms and the influence of polarization mode dispersion. Applications of solitons outside of long-distance transmission are explored. They include generation of short optical pulses, soliton switches and solitons in media having spatial periodicity in axial or in radial directions."
"This is quite simply an excellent text. It is the perfect review of optical soliton effects in a fibre, providing an up-to-date commentary with particular relevance to telecommunications, but with adequate information to be applicable to any area of optical soliton physics. ... sufficient referencing is provided to allow extensive follow up on any of the subtopics. I recommend it highly as an essential text to anyone with even a passing interest in optical solitons." (Prof. J. R. Taylor, Contemporary Physics, Vol. 45 (2), 2004)
1. Introduction.- 2. Wave Motion.- 2.1 What is Wave Motion?.- 2.2 Dispersive and Nonlinear Effects of a Wave.- 2.3 Solitary Waves and the Korteweg de Vries Equation.- 2.4 Solution of the Korteweg de Vries Equation.- 3. Lightwave in Fibers.- 3.1 Polarization Effects.- 3.2 Plane Electromagnetic Waves in Dielectric Materials.- 3.3 Kerr Effect and Kerr Coefficient.- 3.4 Dielectric Waveguides.- 4. Information Transfer in Optical Fibers and Evolution of the Lightwave Packet.- 4.1 How Information is Coded in a Lightwave.- 4.2 How Information is Transferred in Optical Fibers.- 4.3 Master Equation for Information Transfer in Optical Fibers: The Nonlinear Schrödinger Equation.- 4.4 Evolution of the Wave Packet Due to the Group Velocity Dispersion.- 4.5 Evolution of the Wave Packet Due to the Nonlinearity.- 4.6 Technical Data of Dispersion and Nonlinearity in a Real Optical Fiber.- 4.7 Nonlinear Schrödinger Equation and a Solitary Wave Solution.- 4.8 Modulational Instability.- 4.9 Induced Modulational Instability.- 4.10 Modulational Instability Described by the Wave Kinetic Equation.- 5. Optical Solitons in Fibers.- 5.1 Soliton Solutions and the Results of Inverse Scattering.- 5.2 Soliton Periods.- 5.3 Conservation Quantities of the Nonlinear Schrödinger Equation.- 5.4 Dark Solitons.- 5.5 Soliton Perturbation Theory.- 5.6 Effect of Fiber Loss.- 5.7 Effect of the Waveguide Property of a Fiber.- 5.8 Condition of Generation of a Soliton in Optical Fibers.- 5.9 First Experiments on Generation of Optical Solitons.- 6. All-Optical Soliton Transmission Systems.- 6.1 Raman Amplification and Reshaping of Optical Solitons-First Concept of All-Optical Transmission Systems.- 6.2 First Experiments of Soliton Reshaping and of Long Distance Transmission by Raman Amplifications.- 6.3 First Experiment of Soliton Transmission by Means of an Erbium Doped Fiber Amplifier.- 6.4 Concept of the Guiding Center Soliton.- 6.5 The Gordon-Haus Effect and Soliton Timing Jitter.- 6.6 Interaction Between Two Adjacent Solitons.- 6.7 Interaction Between Two Solitons in Different Wavelength Channels.- 7. Control of Optical Solitons.- 7.1 Frequency-Domain Control.- 7.2 Time-Domain Control.- 7.3 Control by Means of Nonlinear Gain.- 7.4 Numerical Examples of Soliton Transmission Control.- 8. Influence of Higher-Order Terms.- 8.1 Self-Frequency Shift of a Soliton Produced by Induced Raman Scattering.- 8.2 Fission of Solitons Produced by Self-Induced Raman Scattering.- 8.3 Effects of Other Higher-Order Dispersion.- 9. Polarization Effects.- 9.1 Fiber Birefringence and Coupled Nonlinear Schrödinger Equations.- 9.2 Solitons in Fibers with Constant Birefringence.- 9.3 Polarization-Mode Dispersion.- 9.4 Solitons in Fibers with Randomly Varying Birefringence.- 10. Dispersion-Managed Solitons (DMS).- 10.1 Problems in Conventional Soliton Transmission.- 10.2 Dispersion Management with Dispersion-Decreasing Fibers.- 10.3 Dispersion Management with Dispersion Compensation.- 10.4 Quasi Solitons.- 11. Application of Dispersion Managed Solitons for Single-Channel Ultra-High Speed Transmissions.- 11.1 Enhancement of Pulse Energy.- 11.2 Reduction of Gordon-Haus Timing Jitter.- 11.3 Interaction Between Adjacent Pulses.- 11.4 Dense Dispersion Management.- 11.5 Nonstationary RZ Pulse Propagation.- 11.6 Some Recent Experiments.- 12. Application of Dispersion Managed Solitons for WDM Transmission.- 12.1 Frequency Shift Induced by Collisions Between DM Solitons in Different Channels.- 12.2 Temporal Shift Induced by Collisions Between DM Solitons in Different Channels.- 12.3 Doubly Periodic Dispersion Management.- 12.4 Some Recent WDM Experiments Using DM Solitons.- 13. Other Applications of Optical Solitons.- 13.1 Soliton Laser.- 13.2 Pulse Compression.- 13.3 All-Optical Switching.- 13.4 Solitons in Fibers with Gratings.- 13.5 Solitons in Microstructure Optical Fibers.- References.
Optical solitons in fibers are a beautiful example of how an abstract mathematical concept has had an impact on new information transmission technologies. The concept of all-optical data transmission with optical soliton systems is now setting the standard for the most advanced transmission systems. The book deals with the motion of light waves in optical fibers, the evolution of light wavepackets, optical information transfer, all-optical soliton transmission systems, the control of optical solitons, polarization effects, dispersion-managed solitons, WDM transmission, soliton lasers, all-optical switching and other applications. This book is a must for all researchers and graduate students active in the field of optical data transmission.
1997-2025 DolnySlask.com Agencja Internetowa