Preface xiEditor Biography xiiiNotes on Contributors xv1 Introduction 11.1 Description of CubeSats 11.1.1 Introduction 11.1.2 Form Factors 31.1.3 Brief Introduction to CubeSat Subsystems 31.1.3.1 Attitude Control 31.1.3.2 Propulsion 61.1.3.3 Power 81.1.3.4 Telecommunication 91.1.4 CubeSat Antennas 111.1.4.1 Low Gain Antennas 111.1.4.2 Medium Gain Antennas 141.1.4.3 High Gain Antennas 151.1.5 Effect of Space Environment on Antennas 261.1.5.1 Radiation 261.1.5.2 Material Outgassing 271.1.5.3 Temperature Change 281.1.5.4 Multipaction Breakdown 291.2 Conclusion 302 Mars Cube One 352.1 Mission Description 352.2 Iris Radio 382.3 X-Band Subsystem 432.3.1 Frequency Allocation 432.3.2 Near Earth Communications Using Low Gain Antennas 432.3.2.1 Antenna Requirements 432.3.2.2 Antenna Solution and Performance 442.3.3 Mars-to-Earth Communications 462.3.3.1 Telecommunication Description: Uplink and Downlink from Mars 462.3.3.2 Mars Low Gain Antennas 482.3.3.3 High Gain Antenna 492.4 Entry, Descent, and Landing UHF Link 672.4.1 State-of-the-Art of UHF Deployable CubeSat Antennas 682.4.1.1 Four Monopole Antenna 682.4.1.2 Helical Antenna 682.4.1.3 Patch Antenna 702.4.2 Circularly Polarized Loop Antenna Concept 702.4.2.1 Loop Antenna Radiation and Polarization 702.4.2.2 Infinite Baluns Design and Shielded Loop 722.4.2.3 Feeding Structure 732.4.3 Mechanical Configuration and Deployment Scheme 742.4.4 Simulations and Measurements 782.4.5 In-Flight Performance 822.5 Conclusions 843 Radar in a CubeSat: RainCube 913.1 Mission Description 913.2 Deployable High-Gain Antenna 943.2.1 State of the Art 943.2.1.1 Inflatable Antennas 953.2.1.2 Deployable Reflectarray Antennas 953.2.1.3 Deployable Mesh Reflector Antennas 963.2.2 Parabolic Reflector Antenna Design 1013.2.2.1 Paraboloidal Reflector 1013.2.2.2 Dual-Reflector Antennas 1023.2.3 RainCube High-Gain Antenna 1043.2.3.1 Antenna Choice: Cassegrain Reflector 1043.2.3.2 Antenna Description 1043.2.3.3 Perfect Paraboloid Antenna 1053.2.3.4 Unfurlable Paraboloid with Ribs and Mesh Structures 1103.2.3.5 Antenna Measurement Results 1193.2.4 Mechanical Deployment 1223.2.5 Design and Testing for the Space Environment 1273.2.6 In-Flight Performance 1313.3 Telecommunication Challenge 1313.4 Conclusion 1344 One Meter Reflectarray Antenna: OMERA 1394.1 Introduction 1394.2 Reflectarray Antennas 1414.2.1 Introductions to Reflectarray 1414.2.2 Advantages of Reflectarray 1414.2.3 Drawbacks of Reflectarray 1424.2.4 State of the Art 1424.3 OMERA 1434.3.1 Antenna Description 1434.3.2 Deployable Feed 1464.3.3 Reflectarray Design 1474.3.4 Deployment Accuracy 1534.3.5 Effect of Struts 1564.3.6 Predicted Gain and Efficiency 1574.3.7 Prototype and Measurements 1584.4 Conclusion 1615 X/Ka-Band One Meter Mesh Reflector for 12U-Class CubeSat 1635.1 Introduction 1635.2 Mechanical Design 1675.2.1 Trade Studies 1675.2.1.1 Design Goals 1675.2.1.2 Rigid 1675.2.1.3 Elastic Composite 1675.2.1.4 Mesh 1685.2.2 Structural Design of the Reflector 1685.2.2.1 Ribs 1705.2.2.2 Hub 1715.2.2.3 Battens 1715.2.2.4 Nets 1715.2.2.5 Perimeter Truss 1745.2.3 Deployment 1745.2.3.1 Boom Design and Deployment 1745.2.3.2 Reflector Deployment 1765.2.3.3 Deployment Issues 1775.3 X/Ka RF Design 1775.3.1 Antenna Configuration and Simulation Model 1775.3.2 X-Band Feed and Mesh Reflector 1795.3.3 Ka-Band Mesh Reflector 1875.3.4 X/Ka-band Mesh Reflector 1935.4 Conclusion 1946 Inflatable Antenna for CubeSat 1976.1 Introduction 1976.2 Inflatable High Gain Antenna 1996.2.1 State of the Art 1996.2.1.1 History of Inflatable Antennas Research and Experiments 1996.2.1.2 History of the Inflatable Antenna for CubeSat Concept 2016.2.2 Inflatable Antenna Design at X-Band 2076.2.2.1 Inflatable Antenna at X-Band: Initial Design and Lessons Learned 2076.2.2.2 Inflatable Antenna at X-Band Final Design: Reflector and Feed Placement 2086.2.2.3 Antenna Measurements 2126.2.3 Structural Design 2156.2.4 Inflation and On-Orbit Rigidization 2206.3 Spacecraft Design Challenges 2266.4 Conclusion 2297 High Aperture Efficiency All-Metal Patch Array 2337.1 Introduction 2337.2 State of the Art 2357.3 Dual-Band Circularly Polarized 8 × 8 Patch Array 2407.3.1 Requirements 2407.3.2 Unit Cell Optimization 2407.3.3 8 × 8 Patch Array 2447.3.4 Comparison With State-of-the-Art 2477.3.5 Other Array Configurations 2497.4 Conclusion 2518 Metasurface Antennas: Flat Antennas for Small Satellites 2558.1 Introduction 2558.2 Modulated Metasurface Antennas 2568.2.1 State of the Art: Pros and Cons 2568.2.2 Design of Modulated Metasurface Antennas 2608.2.3 300 GHz Silicon Micro-Machined MTS Antenna 2698.2.3.1 Objective 2698.2.3.2 Design Methodology: Modulation 2708.2.3.3 MTS Element 2708.2.3.4 Antenna Design, Fabrication, and Test 2718.2.3.5 Improvement Using Anisotropic Surface 2748.2.3.6 Conclusion 2758.2.4 Ka-band Metal-Only Telecommunication Antenna 2768.2.4.1 Objective 2768.2.4.2 Synthesis of the Modulated Metasurface Antenna 2778.2.4.3 Metallic Metasurface Elements 2788.2.4.4 Antenna Design 2798.2.4.5 Fabrication 2808.2.4.6 Measurements 2818.2.4.7 Toward a 20 cm Diameter Antenna 2848.3 Beam Synthesis Using Holographic Metasurface Antennas 2868.3.1 Introduction 2868.3.2 Examples Holographic Metasurface Antennas 2908.3.3 W-Band Pillbox Beam Steering Metasurface Antenna 2948.3.4 Toward an Active Beam Steering Antenna 3028.4 Conclusion 304Acknowledgments 308References 308Index 315
NACER CHAHAT, PHD, is a Senior Antenna/Microwave Engineer with the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena, CA. He developed critical antenna technologies that have enabled new types of NASA missions, delivered antennas for Mars Cube One, the first deep space CubeSat, and delivered the deployable mesh reflector that has enabled Raincube, the first active radar in a CubeSat.