ISBN-13: 9783639376777 / Angielski / Miękka / 2011 / 68 str.
A fast magnetic resonance images (MRI) reconstruction algorithm taking advantage of the prevailing general purpose graphics processing unit (GPGPU) programming paradigm is experimented in this book. In a number of medical imaging modalities, the Fast Fourier Transform (FFT) is being used for the reconstruction of images from acquired raw data.The objective is to develop an algorithm to run under CPU and also in GPU for the reconstruction by performing the Fast Fourier Transform (FFT) as well as Inverse Fourier Transformation (IFT) in much faster way. The algorithm is developed in MATLAB environment. The CUFFT library is used to run under device to study the improved performance of reconstructions. GPUMat is used to running CUDA code in MATLAB. This book exercises the acceleration of MRI reconstruction algorithm on NVIDIA's GeForce G 103M based GPU and Intel(r) Core 2 Duo based CPU. Experimental FFT based reconstruction algorithm shows that GPU based MRI reconstruction achieved significant speedup compared to the CPUs for medical applications at a cheaper cost. The runtime for GPU shows that real-time MRI reconstruction will be possible."
A fast magnetic resonance images (MRI) reconstruction algorithm taking advantage of the prevailing general purpose graphics processing unit (GPGPU) programming paradigm is experimented in this book. In a number of medical imaging modalities, the Fast Fourier Transform (FFT) is being used for the reconstruction of images from acquired raw data.The objective is to develop an algorithm to run under CPU and also in GPU for the reconstruction by performing the Fast Fourier Transform (FFT) as well as Inverse Fourier Transformation (IFT) in much faster way. The algorithm is developed in MATLAB environment. The CUFFT library is used to run under device to study the improved performance of reconstructions. GPUMat is used to running CUDA code in MATLAB. This book exercises the acceleration of MRI reconstruction algorithm on NVIDIAs GeForce G 103M based GPU and Intel® Core™2 Duo based CPU. Experimental FFT based reconstruction algorithm shows that GPU based MRI reconstruction achieved significant speedup compared to the CPUs for medical applications at a cheaper cost. The runtime for GPU shows that real-time MRI reconstruction will be possible.