Part I: Challenges for Powertrain Development.- Challenges for Future Automotive Mobility - Challenges of Passenger Cars Challenges of Powertrain System Diversity - Technical Challenges in Automotive Powertrain Engineering - Product Lifecycle Challenges for Powertrain Systems in the Automotive Industry - Organizational Challenges in Automotive Development- Part II: Systems Engineering.- Systems Engineering Principles - Model-Based Systems Engineering Concepts - Systems Engineering Processes - Systems Engineering Methods and Tools - Systems Engineering - Organizational Constraints and Responsibilities - Standards, Certifications, and Quality Features for Systems Engineering Supported Development in Automotive Decision-Making and the Influence of the Human Factor Part III: Automotive Systems Engineering Approach.- Automotive Powertrain Development Process - Systems Engineering Methods for Automotive Powertrain Development - Product Lifecycle Management in Automotive Industry - Integrated and Open Development Platform for the Automotive Industry - System Simulation in Automotive Industry - Cost Engineering as an Essential Part of Systems Engineering Part IV: Powertrain Development Case Studies. -Case Study – Hybrid Powertrain System Development; - Case Study – Engine System Developmen;t - Case Study – E-Drive System Development; - Case Study – Transmission System Development; - Case Study: Battery System Development; - Case Study: Fuel Cell System Development; - Case Study: Vehicle Attribute Engineering; - Case Study – Thermal System Development for High Voltage Battery Electric Vehicles - Part V: Outlook.- Information Communication Technology - a Base for Innovative Automotive Solutions and Key Enabler for Efficient and Effective Systems Engineering; - Digitalization as Opportunity to Remove Silo-Thinking and Enable Holistic Value Creation; - Future of Systems Engineering
.
Hannes Hick studied mechanical engineering at the Vienna University of Technology with a special focus on mobility systems. He obtained his doctorate in material science during a research assistantship with a thesis on fracture mechanics at the Institute for Material Science and Testing, Vienna University of Technology. Prof. Hick started his industrial career as a designer of powertrain systems in the German Industry and joined AVL Powertrain Engineering in 1997, where he held a range of positions such as head of mechanical development and head of methodology for powertrain system development. Since 2015, Prof. Hick has been full professor and head of the Institute of Machine Components and Methods of Development at Graz University of Technology, and head of the AVL TU Graz Transmission Center.
Klaus Küpper studied mechanical engineering at the Technical University of Darmstadt and at Cornell University, Ithaca, New York. After a scientific assistantship, he received a Ph.D. from Gerhard-Mercator University in Duisburg in the area of control theory, focusing on neural networks and fuzzy logic. Dr. Küpper started his professional career at LuK in Bühl in 1995, holding several positions, finally as a department manager for software and function development for transmission automation. In 2007, he joined AVL Powertrain Engineering in Graz as head of software development, and since 2014, he has held the position of executive chief engineer, where he is globally responsible for electrified powertrains, software, and transmissions.
Helfried Sorger studied mechanical engineering and business at Graz University of Technology. He joined AVL Powertrain Engineering in Graz in 1996 and held positions of designer, project manager, and skill team leader for the volume production design of passenger car engines before being promoted in 2004 to head of design with global responsibility. He received a Ph.D. from the Institute for Internal Combustion Engines and Thermodynamics, Graz University of Technology, focusing on a unique design methodology for internal combustion engines. Since 2010, Dr. Sorger has held the position of executive chief engineer for base powertrain development and is globally responsible for the areas of design, simulation, mechanical development, product quality, and production engineering as well as simultaneous engineering approaches.