1. Introduction 2. Dynamicmodeling of piezoelectric media 3. Modeling in a rotating reference frame 4. Control in the rotating reference frame 5. Applications 6. Practical implementation
FREDERIC GIRAUD is associate Professor at University of Lille and a member of the L2EP (Laboratory of Electrical Engineering and Power Electronics). He's teaching design of Mechatronic systems, with a focus on the electromagnetic actuators, the power electronics, the control theory, and the smart structures / smart material. His field of research deals with the modeling and the control of piezoelectric actuators in general. He developed the concept of the vector control for the position control of Traveling Wave Ultrasonic Motors, and extended it to Ultrasonic transducers in order to achieve high performances with vibrating devices. He is also a specialist in haptic devices. He develops new surfaces than can change how a user perceives them. He pioneered the "ultrasonic tactile surfaces based on the ultrasonic vibration of a glass substrate, optimizing their design, improving their power efficiency, developing their control, and evaluating their performances through psychophysical studies. This research has lead to two new companies. He holds 4 patents, he authored and co-authored more than 60 papers in journal and conferences, and 2 book chapters. He's working with industrial partners through research contracts and projects, and has been involved in more than 6 national/international research projects (two as research leader) two of them are European projects.
Christophe Giraud-Audine received a Mechanical Engineering degree from the Ecole Nationale Supérieure d'Arts et Métiers in 1993, a Master Degree in Electrical Engineering in 1994 and a PhD in Electrical Engineering from the Polytechnical Institute of Toulouse with honours in 1998. He worked for two years at the Electrical Machines and Drive Group at the University of Sheffield until 2001.He is currently associate professor at the Ecole Nationale Supérieure d'Arts et Métiers in Lille where he teaches Electrical Engineering and Mechatronic. He was involved in European projects in collaboration with aeronautics and automotive companies for the developement of sensors and actuators using smart materials. His field of research since 2011 is the modelling and control of mechatronic devices involving piezoelectric actuators for friction reduction, energy harvesting and active tools for forging processes. He is the authors/co-authors of more than 40 papers and one patent one these subjects.