• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Probabilistic Models for Ontology Learning » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2952079]
• Literatura piękna
 [1850969]

  więcej...
• Turystyka
 [71058]
• Informatyka
 [151066]
• Komiksy
 [35579]
• Encyklopedie
 [23181]
• Dziecięca
 [620496]
• Hobby
 [139036]
• AudioBooki
 [1646]
• Literatura faktu
 [228729]
• Muzyka CD
 [379]
• Słowniki
 [2932]
• Inne
 [445708]
• Kalendarze
 [1409]
• Podręczniki
 [164793]
• Poradniki
 [480107]
• Religia
 [510956]
• Czasopisma
 [511]
• Sport
 [61267]
• Sztuka
 [243299]
• CD, DVD, Video
 [3411]
• Technologie
 [219640]
• Zdrowie
 [100984]
• Książkowe Klimaty
 [124]
• Zabawki
 [2281]
• Puzzle, gry
 [3363]
• Literatura w języku ukraińskim
 [258]
• Art. papiernicze i szkolne
 [8020]
Kategorie szczegółowe BISAC

Probabilistic Models for Ontology Learning

ISBN-13: 9783659171406 / Angielski / Miękka / 2012 / 132 str.

Francesca Fallucchi; Fabio Massimo Zanzotto
Probabilistic Models for Ontology Learning Francesca Fallucchi Fabio Massimo Zanzotto 9783659171406 LAP Lambert Academic Publishing - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Probabilistic Models for Ontology Learning

ISBN-13: 9783659171406 / Angielski / Miękka / 2012 / 132 str.

Francesca Fallucchi; Fabio Massimo Zanzotto
cena 263,91
(netto: 251,34 VAT:  5%)

Najniższa cena z 30 dni: 263,29
Termin realizacji zamówienia:
ok. 10-14 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

Capturing word meaning is one of the challenges of natural language processing (NLP). Formal models of meaning such as semantic networks of words or concepts are knowledge repositories used in a variety of applications. To be effectively used, these networks have to be large or, at least, adapted to specific domains. Our main goal is to contribute practically to the research on semantic networks learning models by covering different aspects of the task. We propose a novel probabilistic model for learning semantic networks that expands existing semantic networks taking into accounts both corpus-extracted evidences and the structure of the generated semantic networks. The model exploits structural properties of target relations such as transitivity during learning. Our model presents some innovations in estimating the probabilities. We then propose two extensions of our probabilistic model: a model for learning from a generic domain that can be exploited to extract new information in a specific domain and an incremental ontology learning system that puts human validations in the learning loop.

Capturing word meaning is one of the challenges of natural language processing (NLP). Formal models of meaning such as semantic networks of words or concepts are knowledge repositories used in a variety of applications. To be effectively used, these networks have to be large or, at least, adapted to specific domains. Our main goal is to contribute practically to the research on semantic networks learning models by covering different aspects of the task. We propose a novel probabilistic model for learning semantic networks that expands existing semantic networks taking into accounts both corpus-extracted evidences and the structure of the generated semantic networks. The model exploits structural properties of target relations such as transitivity during learning. Our model presents some innovations in estimating the probabilities. We then propose two extensions of our probabilistic model: a model for learning from a generic domain that can be exploited to extract new information in a specific domain and an incremental ontology learning system that puts human validations in the learning loop.

Kategorie:
Informatyka
Kategorie BISAC:
Computers > General
Wydawca:
LAP Lambert Academic Publishing
Język:
Angielski
ISBN-13:
9783659171406
Rok wydania:
2012
Ilość stron:
132
Waga:
0.20 kg
Wymiary:
22.86 x 15.24 x 0.79
Oprawa:
Miękka
Wolumenów:
01

She has received the PhD in Computer Science and Engineering at the University of Rome "Tor Vergata".She is currently a researcher at University of Rome "GUGLIELMO MARCONI" and she has a collaboration with DigitPA.Her main research interests in the area of NLP include probabilistic taxonomy learning, ontology learning, and knowledge management.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia