• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Sharing Data and Models in Software Engineering » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Sharing Data and Models in Software Engineering

ISBN-13: 9780124172951 / Angielski / Miękka / 2014 / 406 str.

Tim Menzies; Ekrem Kocaguneli; Burak Turhan
Sharing Data and Models in Software Engineering Tim Menzies Ekrem Kocaguneli Burak Turhan 9780124172951 Morgan Kaufmann Publishers - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Sharing Data and Models in Software Engineering

ISBN-13: 9780124172951 / Angielski / Miękka / 2014 / 406 str.

Tim Menzies; Ekrem Kocaguneli; Burak Turhan
cena 301,76
(netto: 287,39 VAT:  5%)

Najniższa cena z 30 dni: 299,28
Termin realizacji zamówienia:
ok. 30 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Data Science for Software Engineering: Sharing Data and Models presents guidance and procedures for reusing data and models between projects to produce results that are useful and relevant. Starting with a background section of practical lessons and warnings for beginner data scientists for software engineering, this edited volume proceeds to identify critical questions of contemporary software engineering related to data and models. Learn how to adapt data from other organizations to local problems, mine privatized data, prune spurious information, simplify complex results, how to update models for new platforms, and more. Chapters share largely applicable experimental results discussed with the blend of practitioner focused domain expertise, with commentary that highlights the methods that are most useful, and applicable to the widest range of projects. Each chapter is written by a prominent expert and offers a state-of-the-art solution to an identified problem facing data scientists in software engineering. Throughout, the editors share best practices collected from their experience training software engineering students and practitioners to master data science, and highlight the methods that are most useful, and applicable to the widest range of projects.

  • Shares the specific experience of leading researchers and techniques developed to handle data problems in the realm of software engineering
  • Explains how to start a project of data science for software engineering as well as how to identify and avoid likely pitfalls
  • Provides a wide range of useful qualitative and quantitative principles ranging from very simple to cutting edge research
  • Addresses current challenges with software engineering data such as lack of local data, access issues due to data privacy, increasing data quality via cleaning of spurious chunks in data

Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Programming - General
Computers > Software Development & Engineering - General
Computers > Data Science - Data Modeling & Design
Wydawca:
Morgan Kaufmann Publishers
Język:
Angielski
ISBN-13:
9780124172951
Rok wydania:
2014
Ilość stron:
406
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Bibliografia

  1. Introduction
  2. Data Science 101
  3. Cross company data: Friend or Foe?
  4. Pruning: Relevancy is the Removal of Irrelevancy
  5. Easy Path: Smarter Design
  6. Instance Weighting: How not to elaborate on analogies
  7. Privacy: Data in Disguise
  8. Stability: How to find a silver-bullet model?
  9. Complexity: How to ensemble multiple models?

Tim Menzies, Full Professor, CS, NC State and a former software research chair at NASA. He has published 200+ publications, many in the area of software analytics. He is an editorial board member (1) IEEE Trans on SE; (2) Automated Software Engineering journal; (3) Empirical Software Engineering Journal. His research includes artificial intelligence, data mining and search-based software engineering. He is best known for his work on the PROMISE open source repository of data for reusable software engineering experiments. Ekrem Kocaguneli received his Ph.D. from the Lane Department of Computer Science and Electrical Engineering, West Virginia University. His research focuses on empirical software engineering, data/model problems associated with software estimation and tackling them with smarter machine learning algorithms. Burak Turhan is a Professor of Software Engineering, University of Oulu, Finland. His research interests include empirical studies of software engineering on software quality, defect prediction, and cost estimation, as well as data mining for software engineering. Leandro L. Minku is a Research Fellow II at the Centre of Excellence for Research in Computational Intelligence and Applications (CERCIA), School of Computer Science, the University of Birmingham (UK). His research focuses on software prediction models, and he is the co-author of the first approach able to improve the performance of software predictors based on cross-company data over single-company data by taking into account the changeability of software prediction tasks' environments. Fayola Peters is a PostDoctoral Researcher at LERO, the Irish Software Engineering Research Center, University of Limerick, Ireland. Along with Mark Grechanik, she is the author of one of the two known algorithms (presented at ICSE'12) that can privatize algorithms while still preserving the data mining properties of that data.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia