• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Advances in Probabilistic Graphical Models » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2952079]
• Literatura piękna
 [1850969]

  więcej...
• Turystyka
 [71058]
• Informatyka
 [151066]
• Komiksy
 [35579]
• Encyklopedie
 [23181]
• Dziecięca
 [620496]
• Hobby
 [139036]
• AudioBooki
 [1646]
• Literatura faktu
 [228729]
• Muzyka CD
 [379]
• Słowniki
 [2932]
• Inne
 [445708]
• Kalendarze
 [1409]
• Podręczniki
 [164793]
• Poradniki
 [480107]
• Religia
 [510956]
• Czasopisma
 [511]
• Sport
 [61267]
• Sztuka
 [243299]
• CD, DVD, Video
 [3411]
• Technologie
 [219640]
• Zdrowie
 [100984]
• Książkowe Klimaty
 [124]
• Zabawki
 [2281]
• Puzzle, gry
 [3363]
• Literatura w języku ukraińskim
 [258]
• Art. papiernicze i szkolne
 [8020]
Kategorie szczegółowe BISAC

Advances in Probabilistic Graphical Models

ISBN-13: 9783540689942 / Angielski / Twarda / 2007 / 386 str.

Peter Lucas; Jos A. Gmez; Antonio Salmern
Advances in Probabilistic Graphical Models Peter Lucas Jos A. Gmez Antonio Salmern 9783540689942 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Advances in Probabilistic Graphical Models

ISBN-13: 9783540689942 / Angielski / Twarda / 2007 / 386 str.

Peter Lucas; Jos A. Gmez; Antonio Salmern
cena 402,53
(netto: 383,36 VAT:  5%)

Najniższa cena z 30 dni: 385,52
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

This book brings together important topics of current research in probabilistic graphical modeling, learning from data and probabilistic inference. Coverage includes such topics as the characterization of conditional independence, the learning of graphical models with latent variables, and extensions to the influence diagram formalism as well as important application fields, such as the control of vehicles, bioinformatics and medicine.

Kategorie:
Technologie
Kategorie BISAC:
Mathematics > Matematyka stosowana
Computers > Artificial Intelligence - General
Mathematics > Prawdopodobieństwo i statystyka
Wydawca:
Springer
Seria wydawnicza:
Studies in Fuzziness and Soft Computing
Język:
Angielski
ISBN-13:
9783540689942
Rok wydania:
2007
Wydanie:
2007
Ilość stron:
386
Waga:
0.76 kg
Wymiary:
23.5 x 15.5
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia

Foundations.- Markov Equivalence in Bayesian Networks.- A Causal Algebra for Dynamic Flow Networks.- Graphical and Algebraic Representatives of Conditional Independence Models.- Bayesian Network Models with Discrete and Continuous Variables.- Sensitivity Analysis of Probabilistic Networks.- Inference.- A Review on Distinct Methods and Approaches to Perform Triangulation for Bayesian Networks.- Decisiveness in Loopy Propagation.- Lazy Inference in Multiply Sectioned Bayesian Networks Using Linked Junction Forests.- Learning.- A Study on the Evolution of Bayesian Network Graph Structures.- Learning Bayesian Networks with an Approximated MDL Score.- Learning of Latent Class Models by Splitting and Merging Components.- Decision Processes.- An Efficient Exhaustive Anytime Sampling Algorithm for Influence Diagrams.- Multi-currency Influence Diagrams.- Parallel Markov Decision Processes.- Applications.- Applications of HUGIN to Diagnosis and Control of Autonomous Vehicles.- Biomedical Applications of Bayesian Networks.- Learning and Validating Bayesian Network Models of Gene Networks.- The Role of Background Knowledge in Bayesian Classification.

In recent years considerable progress has been made in the area of probabilistic graphical models, in particular Bayesian networks and influence diagrams. Probabilistic graphical models have become mainstream in the area of uncertainty in artificial intelligence;
contributions to the area are coming from computer science, mathematics, statistics and engineering.

This carefully edited book brings together in one volume some of the most important topics of current research in probabilistic graphical modelling, learning from data and probabilistic inference. This includes topics such as the characterisation of conditional
independence, the sensitivity of the underlying probability distribution of a Bayesian network to variation in its parameters, the learning of graphical models with latent variables and extensions to the influence diagram formalism.  In addition, attention is given to important application fields of probabilistic graphical models, such as the control of vehicles, bioinformatics and medicine.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia