"The motivation of this book is to provide to the readers tutorial presentations of several approaches for interval reachability analysis, without requiring any previous knowledge and experience of reachability analysis. Two parts, Part I and Part II, are used for this purpose. Part I describes six main methods for interval reachability analysis and in Part II several applications are presented." (Takashi Amemiya, Mathematical Reviews, October, 2022)
Chapter 1. Introduction.- Part 1: Reachability Methods.- Chapter 2. Interval Analysis.- Chapter 3. Monotonicity.- Chapter 4. Mixed-Monotonicity.- Chapter 5. Sampled-Data Mixed-Monotonicity.- Chapter 6. Growth Bounds.- Chapter 7. Sampling-Based Methods.- Part 2: Applications.- Chapter 8. Safety and Reachability Verification.- Chapter 9. Interval Volume as a Robustness Measure.- Chapter 10. Abstraction-Based Control Synthesis.
Pierre-JeanMeyer received his Master’s degree in Electrical Engineering and Automatic Control from Institut National Polytechnique de Toulouse, France, in 2011. He then received his Ph.D. in Automatic Control from Université Grenoble Alpes, France, in 2015. Between 2015 and 2017, he was a postdoctoral researcher at the Automatic Control Department of KTH Royal Institute of Technology, Sweden. Since December 2017, he has been a postdoctoral researcher at the Electrical Engineering and Computer Sciences Department of U.C. Berkeley. His research interests include reachability analysis and abstraction-based control synthesis.
AlexDevonport received his B.S. in Electrical Engineering from Arizona State University in 2016, where he then worked as a researcher. Since 2017, he has been a graduate student in the Electrical Engineering and Computer Science department of U.C. Berkeley. His main research interests are reachability analysis and data-driven methods in control theory.
MuratArcak is Professor at U.C. Berkeley in the Electrical Engineering and Computer Sciences Department. He received his B.S. degree in Electrical Engineering from the Bogazici University, Turkey, in 1996, and his M.S. and Ph.D. degrees from the University of California, Santa Barbara, in 1997 and 2000, respectively. His research is focused on dynamical systems and control theory with applications to synthetic biology, multi-agent systems, and transportation. Prior to joining Berkeley in 2008, he was a faculty member at the Rensselaer Polytechnic Institute. He received a CAREER Award from the National Science Foundation in 2003, the Donald P. Eckman Award from the American Automatic Control Council in 2006, the Control and Systems Theory Prize from the Society for Industrial and Applied Mathematics (SIAM) in 2007, and the Antonio Ruberti Young Researcher Prize from the IEEE Control Systems Society in 2014. He is a member of SIAM and a fellow of IEEE.