ISBN-13: 9781119764410 / Angielski / Twarda / 2021 / 464 str.
ISBN-13: 9781119764410 / Angielski / Twarda / 2021 / 464 str.
Preface xvList of Contributors xixAcronyms List xx1 Hands-on Wireless Communication Experience 1Hüseyin Arslan1.1 Importance of Laboratory-Based Learning of Wireless Communications 11.2 Model for a Practical Lab Bench 31.3 Examples of Co-simulation with Hardware 61.4 A Sample Model for a Laboratory Course 81.4.1 Introduction to the SDR and Testbed Platform 111.4.2 Basic Simulation 111.4.3 Measurements and Multidimensional Signal Analysis 111.4.4 Digital Modulation 121.4.5 Pulse Shaping 131.4.6 RF Front-end and RF Impairments 131.4.7 Wireless Channel and Interference 141.4.8 Synchronization and Channel Estimation 151.4.9 OFDM Signal Analysis and Performance Evaluation 151.4.10 Multiple Accessing 161.4.11 Independent Project Development Phase 161.4.11.1 Software Defined Radio 171.4.11.2 Dynamic Spectrum Access and CR Experiment 171.4.11.3 Wireless Channel 171.4.11.4 Wireless Channel Counteractions 181.4.11.5 Antenna Project 181.4.11.6 Signal Intelligence 181.4.11.7 Channel, User, and Context Awareness Project 191.4.11.8 Combination of DSP Lab with RF and Microwave Lab 191.4.11.9 Multiple Access and Interference Management 191.4.11.10 Standards 201.5 Conclusions 20References 202 Performance Metrics and Measurements 23Hüseyin Arslan2.1 Signal Quality Measurements 232.1.1 Measurements Before Demodulation 242.1.2 Measurements During and After Demodulation 252.1.2.1 Noise Figure 262.1.2.2 Channel Frequency Response Estimation 262.1.3 Measurements After Channel Decoding 262.1.3.1 Relation of SNR with BER 272.1.4 Error Vector Magnitude 272.1.4.1 Error-Vector-Time and Error-Vector-Frequency 292.1.4.2 Relation of EVM with Other Metrics 302.1.4.3 Rho 312.1.5 Measures After Speech or Video Decoding 312.2 Visual Inspections and Useful Plots 322.2.1 Advanced Scatter Plot 392.3 Cognitive Radio and SDR Measurements 402.4 Other Measurements 422.5 Clarifying dB and dBm 442.6 Conclusions 45References 453 Multidimensional Signal Analysis 49Hüseyin Arslan3.1 Why Multiple Dimensions in a Radio Signal? 493.2 Time Domain Analysis 523.2.1 CCDF and PAPR 533.2.2 Time Selectivity Measure 563.3 Frequency Domain Analysis 573.3.1 Adjacent Channel Power Ratio 593.3.2 Frequency Selectivity Measure 613.4 Joint Time-Frequency Analysis 623.5 Code Domain Analysis 643.5.1 Code Selectivity 663.6 Correlation Analysis 673.7 Modulation Domain Analysis 683.8 Angular Domain Analysis 683.8.1 Direction Finding 683.8.2 Angular Spread 703.9 MIMO Measurements 713.9.1 Antenna Correlation 723.9.2 RF Cross-Coupling 723.9.3 EVM Versus Antenna Branches 733.9.4 Channel Parameters 733.10 Conclusions 73References 744 Simulating a Communication System 77Muhammad Sohaib J. Solaija and Hüseyin Arslan4.1 Simulation: What,Why? 774.2 Approaching a Simulation 784.2.1 Strategy 784.2.2 General Methodology 804.3 Basic Modeling Concepts 814.3.1 System Modeling 814.3.2 Subsystem Modeling 814.3.3 Stochastic Modeling 824.4 What is a Link/Link-level Simulation? 824.4.1 Source and Source Coding 824.4.2 Channel Coding 834.4.3 Symbol Mapping/Modulation 834.4.4 Upsampling 844.4.5 Digital Filtering 844.4.6 RF Front-end 854.4.7 Channel 864.4.8 Synchronization and Equalization 874.4.9 Performance Evaluation and Signal Analysis 874.5 Communication in AWGN - A Simple Case Study 884.5.1 Receiver Design 884.6 Multi-link vs. Network-level Simulations 884.6.1 Network Layout Generation 904.6.1.1 Hexagonal Grid 904.6.1.2 PPP-based Network Layout 914.7 Practical Issues 934.7.1 Monte Carlo Simulations 934.7.2 Random Number Generation 944.7.2.1 White Noise Generation 944.7.2.2 Random Binary Sequence 944.7.3 Values of Simulation Parameters 954.7.4 Confidence Interval 954.7.5 Convergence/Stopping Criterion 954.8 Issues/Limitations of Simulations 954.8.1 Modeling Errors 964.8.1.1 Errors in System Model 964.8.1.2 Errors in Subsystem Model 964.8.1.3 Errors in Random Process Modeling 964.8.2 Processing Errors 964.9 Conclusions 97References 975 RF Impairments 99Hüseyin Arslan5.1 Radio Impairment Sources 995.2 IQ Modulation Impairments 1025.3 PA Nonlinearities 1065.4 Phase Noise and Time Jitter 1105.5 Frequency Offset 1125.6 ADC/DAC Impairments 1135.7 Thermal Noise 1145.8 RF Impairments and Interference 1145.8.1 Harmonics and Intermodulation Products 1145.8.2 Multiple Access Interference 1165.9 Conclusions 118References 1186 Digital Modulation and Pulse Shaping 121Hüseyin Arslan6.1 Digital Modulation Basics 1216.2 Popularly Used Digital Modulation Schemes 1236.2.1 PSK 1236.2.2 FSK 1256.2.2.1 GMSK and Approximate Representation of GSM GMSK Signal 1276.2.3 QAM 1296.2.4 Differential Modulation 1326.3 Adaptive Modulation 1336.3.1 Gray Mapping 1356.3.2 Calculation of Error 1356.3.3 Relation of Eb No with SNR at the receiver 1386.4 Pulse-Shaping Filtering 1386.5 Conclusions 146References 1467 OFDM Signal Analysis and Performance Evaluation 147Hüseyin Arslan7.1 Why OFDM? 1477.2 Generic OFDM System Design and Its Evaluation 1497.2.1 Basic CP-OFDM Transceiver Design 1507.2.2 Spectrum of the OFDM Signal 1517.2.3 PAPR of the OFDM Signal 1557.2.4 Performance in Multipath Channel 1577.2.4.1 Time-Dispersive Multipath Channel 1577.2.4.2 Frequency-Dispersive Multipath Channel 1617.2.5 Performance with Impairments 1627.2.5.1 Frequency Offset 1637.2.5.2 Symbol Timing Error 1677.2.5.3 Sampling Clock Offset 1707.2.5.4 Phase Noise 1717.2.5.5 PA Nonlinearities 1727.2.5.6 I/Q Impairments 1757.2.6 Summary of the OFDM Design Considerations 1777.2.7 Coherent versus Differential OFDM 1787.3 OFDM-like Signaling 1807.3.1 OFDM Versus SC-FDE 1807.3.2 Multi-user OFDM and OFDMA 1817.3.3 SC-FDMA and DFT-S-OFDM 1827.4 Case Study: Measurement-Based OFDM Receiver 1857.4.1 System Model 1857.4.1.1 Frame Format 1867.4.1.2 OFDM Symbol Format 1867.4.1.3 Baseband Transmitter Blocks and Transmitted Signal Model 1867.4.1.4 Received Signal Model 1887.4.2 Receiver Structure and Algorithms 1897.4.2.1 Packet Detection 1917.4.2.2 Frequency Offset Estimation and Compensation 1917.4.2.3 Symbol Timing Estimation 1927.4.2.4 Packet-end Detection and Packet Extraction 1937.4.2.5 Channel Estimation and Equalization 1947.4.2.6 Pilot Tracking 1957.4.2.7 Auto-modulation Detection 1957.4.3 FCH Decoding 1967.4.4 Test and Measurements 1967.5 Conclusions 197References 1988 Analysis of Single-Carrier Communication Systems 201Hüseyin Arslan8.1 A Simple System in AWGN Channel 2018.2 Flat Fading (Non-Dispersive) Multipath Channel 2108.3 Frequency-Selective (Dispersive) Multipath Channel 2158.3.1 Time-Domain Equalization 2198.3.2 Channel Estimation 2238.3.3 Frequency-Domain Equalization 2268.4 Extension of Dispersive Multipath Channel to DS-CDMA-based Wideband Systems 2298.5 Conclusions 232References 2329 Multiple Accessing, Multi-Numerology, Hybrid Waveforms 235Mehmet Mert ¸Sahin and Hüseyin Arslan9.1 Preliminaries 2359.1.1 Duplexing 2369.1.2 Downlink Communication 2379.1.3 Uplink Communication 2389.1.4 Traffic Theory and Trunking Gain 2389.2 Orthogonal Design 2419.2.1 TDMA 2419.2.2 FDMA 2429.2.3 Code Division Multiple Access (CDMA) 2439.2.4 Frequency Hopped Multiple Access (FHMA) 2459.2.5 Space Division Multiple Access (SDMA) 2469.2.5.1 Multiuser Multiple-input Multiple-output (MIMO) 2479.3 Non-orthogonal Design 2499.3.1 Power-domain Non-orthogonal Multiple Access (PD-NOMA) 2509.3.2 Code-domain Non-orthogonal Multiple Access 2519.4 Random Access 2539.4.1 ALOHA 2539.4.2 Carrier Sense Multiple Accessing (CSMA) 2549.4.3 Multiple Access Collision Avoidance (MACA) 2549.4.4 Random Access Channel (RACH) 2559.4.5 Grant-free Random Access 2559.5 Multiple Accessing with Application-Based Hybrid Waveform Design 2569.5.1 Multi-numerology Orthogonal Frequency Division Multiple Access (OFDMA) 2569.5.2 Radar-Sensing and Communication (RSC) Coexistence 2589.5.3 Coexistence of Different Waveforms in Multidimensional Hyperspace for 6G and Beyond Networks 2609.6 Case Study 261Appendix: Erlang B table 263References 26310 Wireless Channel and Interference 267Abuu B. Kihero, Armed Tusha, and Hüseyin Arslan10.1 Fundamental Propagation Phenomena 26710.2 Multipath Propagation 26910.2.1 Large-Scale Fading 26910.2.1.1 Path Loss 27010.2.1.2 Shadowing 27110.2.2 Small-Scale Fading 27210.2.2.1 Characterization of Time-Varying Channels 27310.2.2.2 Rayleigh and Rician Fading Distributions 27410.2.3 Time, Frequency and Angular Domains Characteristics of Multipath Channel 27610.2.3.1 Delay Spread 27610.2.3.2 Angular Spread 27910.2.3.3 Doppler Spread 28110.2.4 Novel Channel Characteristics in the 5G Technology 28410.3 Channel as a Source of Interference 28810.3.1 Interference due to Large-Scale Fading 28810.3.1.1 Cellular Systems and CoChannel Interference 28810.3.1.2 Cochannel Interference Control via Resource Assignment 28910.3.2 Interference due to Small-Scale Fading 29210.4 Channel Modeling 29310.4.1 Analytical Channel Models 29410.4.1.1 Correlation-based Models 29410.4.1.2 Propagation-Motivated Models 29410.4.2 Physical Models 29510.4.2.1 Deterministic Model 29510.4.2.2 Geometry-based Stochastic Model 29510.4.2.3 Nongeometry-based Stochastic Models 29610.4.3 3GPP 5G Channel Models 29710.4.3.1 Tapped Delay Line (TDL) Model 29710.4.3.2 Clustered Delay Line (CDL) Model 29810.4.3.3 Generating Channel Coefficients Using CDL Model 29910.4.4 Role of Artificial Intelligence (AI) in Channel Modeling 30010.5 Channel Measurement 30110.5.1 Frequency Domain Channel Sounder 30310.5.1.1 Swept Frequency/Chirp Sounder 30310.5.2 Time Domain Channel Sounder 30410.5.2.1 Periodic Pulse/Impulse Sounder 30410.5.2.2 Correlative/Pulse Compression Sounders 30510.5.3 Challenges of Practical Channel Measurement 30810.6 Channel Emulation 30810.6.1 Baseband and RF Domain Channel Emulators 30910.6.2 Reverberation Chambers as Channel Emulator 30910.6.2.1 General Principles 30910.6.2.2 Emulating Multipath Effects Using RVC 31110.6.3 Commercial Wireless Channel Emulators 31810.7 Wireless Channel Control 31910.8 Conclusion 321References 32111 Carrier and Time Synchronization 325Musab Alayasra and Hüseyin Arslan11.1 Signal Modeling 32511.2 Synchronization Approaches 32711.3 Carrier Synchronization 32911.3.1 Coarse Frequency Offset Compensation 33111.3.1.1 DFT-based Coarse Frequency Offset Compensation 33111.3.1.2 Phase-based Coarse Frequency Offset Compensation 33311.3.2 Fine Frequency Offset Compensation 33511.3.2.1 Feedforward MLE-Based Frequency Offset Compensation 33511.3.2.2 Feedback Heuristic-Based Frequency Offset Compensation 34011.3.3 Carrier Phase Offset Compensation 34411.4 Time Synchronization 34511.4.1 Frame Synchronization 34611.4.2 Symbol Timing Synchronization 34711.4.2.1 Feedforward MLE-based Symbol Timing Synchronization 34811.4.2.2 Feedback Heuristic-based Symbol Timing Synchronization 34911.5 Conclusion 352References 35312 Blind Signal Analysis 355Mehmet Ali Aygül, Ahmed Naeem, and Hüseyin Arslan12.1 What is Blind Signal Analysis? 35512.2 Applications of Blind Signal Analysis 35512.2.1 Spectrum Sensing 35612.2.2 Parameter Estimation and Signal Identification 35712.2.2.1 Parameter Estimation 35712.2.2.2 Signal Identification 35712.2.3 Radio Environment Map 35812.2.4 Equalization 36012.2.5 Modulation Identification 36112.2.6 Multi-carrier (OFDM) Parameters Estimation 36212.3 Case Study: Blind Receiver 36312.3.1 Bandwidth Estimation 36412.3.2 Carrier Frequency Estimation 36512.3.3 Symbol Rate Estimation 36612.3.4 Pulse-Shaping and Roll-off Factor Estimation 36612.3.5 Optimum Sampling Phase Estimation 36812.3.6 Timing Recovery 36912.3.7 Frequency Offset and Phase Offset Estimation 37112.4 Machine Learning for Blind Signal Analysis 37212.4.1 Deep Learning 37412.4.2 Applications of Machine Learning 37512.4.2.1 Signal and Interference Identification 37512.4.2.2 Multi-RF Impairments Identification, Separation, and Classification 37512.4.2.3 Channel Modeling and Estimation 37612.4.2.4 Spectrum Occupancy Prediction 37712.5 Challenges and Potential Study Items 37812.5.1 Challenges 37812.5.2 Potential Study Items 37912.6 Conclusions 379References 38013 Radio Environment Monitoring 383Halise Türkmen, Saira Rafique, and Hüseyin Arslan13.1 Radio Environment Map 38413.2 Generalized Radio Environment Monitoring 38513.2.1 Radio Environment Monitoring with the G-REM Framework 38713.3 Node Types 38813.4 Sensing Modes 38813.5 Observable Data, Derivable Information and Other Sources 38913.6 Sensing Methods 38913.6.1 Sensing Configurations 39013.6.2 Processing Data and Control Signal 39113.6.2.1 Channel State Information (CSI) 39113.6.2.2 Channel Impulse Response (CIR) 39313.6.2.3 Channel Frequency Response (CFR) 39313.6.3 Blind Signal Analysis 39313.6.4 Radio Detection and Ranging 39413.6.4.1 Radar Test-bed 40113.6.5 Joint Radar and Communication 40213.6.5.1 Coexistence 40313.6.5.2 Co-Design 40313.6.5.3 RadComm 40513.6.5.4 CommRad 40613.7 Mapping Methods 40713.7.1 Signal Processing Algorithms 40713.7.2 Interpolation Techniques 40813.7.2.1 Inverse Distance Weighted Interpolation 40813.7.2.2 Kriging's Interpolation 40913.7.3 Model-Based Techniques 41013.7.4 Learning-Based Techniques 41013.7.5 Hybrid Techniques 41013.7.6 Case Study: Radio Frequency Map Construction 41013.7.6.1 Radio Frequency Map Construction Test-bed for CR 41113.7.7 Case Study: Wireless Local Area Network/Wi-Fi Sensing 41313.7.7.1 WLAN Sensing Test-bed for Gesture Detection 41513.8 Applications of G-REM 41613.8.1 Cognitive Radios 41713.8.2 Security 41713.8.2.1 PHY Layer Security 41713.8.2.2 Cross-Layer Security 41713.8.3 Multi-Antenna Communication Systems 41813.8.3.1 UE and Obstacle Tracking for Beam Management 41813.8.3.2 No-Feedback Channel Estimation for FDD MIMO and mMIMO Systems 41813.8.4 Formation and Management of Ad Hoc Networks and Device-to-Device Communication 41813.8.5 Content Caching 41913.8.6 Enabling Flexible Radios for 6G and Beyond Networks 41913.8.7 Non-Communication Applications 41913.9 Challenges and Future Directions 42013.9.1 Security 42013.9.2 Scheduling 42113.9.3 Integration of (New) Technologies 42113.9.3.1 Re-configurable Intelligent Surfaces 42113.9.3.2 Quantum Radar 42113.10 Conclusion 422References 422Index 425
Hüseyin Arslan is a Professor at the University of South Florida. He has broad research experience in wireless communication systems, digital signal processing, cognitive radio, and channel modeling.
1997-2024 DolnySlask.com Agencja Internetowa