• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Web Recommendations Systems » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Web Recommendations Systems

ISBN-13: 9789811525155 / Angielski / Miękka / 2021 / 164 str.

K. R. Venugopal; K. C. Srikantaiah; Sejal Santosh Nimbhorkar
Web Recommendations Systems K. R. Venugopal K. C. Srikantaiah Sejal Santos 9789811525155 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Web Recommendations Systems

ISBN-13: 9789811525155 / Angielski / Miękka / 2021 / 164 str.

K. R. Venugopal; K. C. Srikantaiah; Sejal Santosh Nimbhorkar
cena 564,88 zł
(netto: 537,98 VAT:  5%)

Najniższa cena z 30 dni: 539,74 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
inne wydania
Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Internet - Web Programming
Computers > Software Development & Engineering - Computer Graphics
Computers > Data Science - Data Modeling & Design
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9789811525155
Rok wydania:
2021
Wydanie:
2020
Ilość stron:
164
Oprawa:
Miękka
Wolumenów:
01

1 Introduction 

1.1 World Wide Web 
1.2 Web Mining 
1.2.1 Issues in Web Mining 
1.3 Web Recommendations 
1.4 Classification of Recommender system 
1.4.1 Query Recommendations 
1.4.2 Webpage Recommendations 
1.4.3 Image Recommendations 
References 

2 Web Data Extraction and Integration System for Search Engine Result Pages 

2.1 Introduction 
2.2 Related Works 
2.3 System Architecture 
2.3.1 Problem Definition 
2.4 Mathematical Model and Algorithms 
2.4.1 Web Data Extraction using Similarity Function(WDES) 
2.4.2 Web Data Integration using Cosine Similarity(WDICS) 
2.5 Experiments 
2.5.1 Precision and Recall Vs. Attributes 
2.6 Summary 
References 

3 Mining and Analysis ofWeb Sequential Patterns 

3.1 Introduction 
3.2 Related Works 
3.3 System Architecture 
3.3.1 Problem Definition 
3.4 BGCAP Algorithm 
3.5 Experiments 
3.5.1 Data Size Vs. Run Time 
3.5.2 Threshold Vs. Run Time 
3.5.3 Threshold Vs. Number of Patterns 
3.6 Summary 
References 

4 Web Caching and Prefetching 

4.1 Introduction 
4.2 Related Works 
4.3 System Architecture 
4.3.1 Problem Definition 
4.3.2 Basic Definitions 
4.4 Mathematical Model 
4.4.1 Finding Prefetching Rules using Periodicity 
4.4.2 Profit Function 
4.4.3 WCP-CMA Algorithm
4.4.4 Example
4.5 Experiments 
4.5.1 Cache Hit Ratio 
4.5.2 Delay 
4.5.3 Effect of Periodicity 
4.5.4 Effect of Cyclic Behaviour 
4.5.5 Execution Time 
4.6 Summary 
References 

5 Discovery of Synonyms from the Web
 
5.1 Introduction 
5.2 Related Works 
5.3 System Architecture 
5.3.1 Problem Definition 
5.4 System Model and Algorithm 
5.4.1 Generation of Candidate Synonyms 
5.4.2 Ranking of Candidate Synonyms 
5.4.3 ASWAT Algorithm
5.5 Experiments 
5.6 Summary 
References 

6 Ranking Search Engine Result Pages of a Specialty Search Engine

6.1 Introduction 
6.2 Related Works 
6.3 System Architecture 
6.3.1 Problem Definition 
6.4 Mathematical Model 
6.4.1 Probability of Correctness of Facts (PCF) 
6.4.2 Implication Between Facts 
6.4.3 SIM (TF,F0 ) for Books Domain 
6.5 Complexity Analysis 
6.5.1 Time Complexity 
6.5.2 Space Complexity 
6.6 Experiments 
6.7 Summary 
References 

7 Construction of Topic Directories 

7.1 Introduction 
7.2 Related Works 
7.3 System Architecture 
7.3.1 Problem Definition 
7.4 Mathematical Model and Algorithm 
7.4.1 Hashing 
7.4.2 Levenshtein Distance (LD) 
7.4.3 Levenshtein Similarity Weight (LSW) 
7.4.4 Similarity betweenWebpage and Category in Web Directory 
7.4.5 Mapping of Pages onto Categories 
7.4.6 Algorithm MPCLSW
7.5 Experiments 
7.5.1 Execution Time 
7.5.2 Accuracy 
7.5.3 Precision 
7.5.4 Recall 
7.5.5 F-score 
7.6 Summary 
References 

8 Query Relevance Graph for Query Recommendations 

8.1 Introduction 
8.2 Related Works 
8.2.1 Query Expansion 
8.2.2 Snippet based Query Recommendations 
8.2.3 Graph based Query Recommendations 
8.2.4 Recommendation Applications 
8.3 Query Relevance Model and QRGQR Algorithm 
8.3.1 Problem Definition 
8.3.2 Query Click Graph 
8.3.3 Query Text Similarity Graph 
8.3.4 Query Relevance Graph 
8.3.5 QRGQR Algorithm 
8.4 Experiments 
8.4.1 Data Collection 
8.4.2 Data Cleaning 
8.4.3 Varying of Parameter-Jaccard Coefficient 
8.4.4 Query Recommendation results 
8.4.5 Performance Analysis 
8.4.6 Efficiency 
8.4.7 Image Recommendation 
8.5 Summary 
References 

9 Related Search Recommendation with User Feedback Session 

9.1 Introduction 
9.2 Related Works 
9.2.1 Measuring Similarity between Two Words 
9.2.2 Query Recommendation Techniques 
9.3 Related Search Recommendation Framework and RSR Algorithm
9.3.1 Problem Definition 
9.3.2 Co-occurrenceMeasures to Compute Semantic Similarity
9.3.3 WordNet based Semantic Similarity
9.3.4 Rocchio’s Model 
9.3.5 Snippet Click Model 
9.3.6 RSR Algorithm 
9.4 Experiments 
9.4.1 Data Collection 
9.4.2 Experiment Setup 
9.4.3 Query Recommendation Results 
9.4.4 Performance Analysis 
9.5 Summary 
References

10 Webpage Recommendations based Web Navigation Prediction 

10.1 Introduction 
10.2 Related Works 
10.2.1 Web Page Prediction 
10.2.2 Prediction Applications 
10.3 Web Navigation Prediction Framework and WNPWR Algorithm 
10.3.1 Problem Definition 
10.3.2 Session Identification Method with Average Time of Visiting Web Pages 
10.3.3 Prediction Models 
10.3.4 Two-Tier Prediction Framework 
10.3.5 WNPWR Algorithm
10.4 Experiments 
10.4.1 Data Collection 
10.4.2 User and Session Identification 
10.4.3 Experiment Setup 
10.4.4 Results Comparison 
10.5 Summary 
References 

11 Webpage Recommendations based on User Session Graph 

11.1 Introduction 
11.2 Related Works 
11.3 Webpage Recommendations Framework andWRUSG Algorithm
11.3.1 Problem Definition 
11.3.2 Webpage Recommendations Framework 
11.3.3 WRUSG Algorithm 
11.4 Experiments 
11.4.1 Data Collection 
11.4.2 Experiment Set-up 
11.4.3 PerformanceMetrics 
11.4.4 Performance Evaluation 
11.5 Summary 
References 

12 Advertisement Recommendations using ExpectationMaximization

12.1 Introduction 
12.2 Related Works 
12.3 Prediction Conversion in Advertising using Expectation Maximization Model and PCAEM Algorithm 
12.3.1 Problem Definition 
12.3.2 Prediction Conversion in Advertising using Expectation Maximization Model 
12.3.3 PCAEM Algorithm 
12.4 Experiments 
12.4.1 Data Collection 
12.4.2 Experiment Setup 
12.4.3 PerformanceMetrics 
12.4.4 Performance Evaluation 
12.5 Summary 
References 

13 Image Recommendations with Absorbing Markov Chain 

13.1 Introduction 
13.2 Related Works 
13.2.1 Content Based Image Retrieval 
13.2.2 Annotation Based Image Retrieval 
13.3 Image Recommendation Framework and IRAbMC Algorithm 
13.3.1 Problem Definition 
13.3.2 Image Recommendation Framework 
13.3.3 IRAbMC Algorithm 
13.4 Experiments 
13.4.1 Data Collection 
13.4.2 Experiment Setup 
13.4.3 Performance Evaluation 
13.5 Summary 
References 

14 Image Recommendation with User Relevance Feedback Session 

14.1 Introduction 
14.2 Related Works 
14.3 Image Recommendation Framework and IR URFS VF Algorithm
14.3.1 Problem Definition 
14.3.2 Image Recommendation Framework 
14.3.3 IR URFS VF Algorithm 
14.4 Experiments
14.4.1 Data Collection 
14.4.2 Experiment Setup 
14.4.3 Performance Evaluation 
14.5 Summary 
References 

15 Image Recommendation by ANOVA Cosine Similarity 

15.1 Introduction 
15.2 Related Works 
15.2.1 Content Based Image Retrieval (CBIR) 
15.2.2 Annotation Based Image Retrieval (ABIR) 
15.2.3 Text + Visual (Hybrid) method for image search 
15.2.4 Image Search with reduced Semantic Gap 
15.3 ACSIR Framework and Algorithm 
15.3.1 Problem Definition 
15.3.2 ACSIR Framework 
15.3.3 ACSIR Algorithm
15.4 Experiments 
15.4.1 Data Collection 
15.4.2 Experiment Set-up 
15.4.3 Performance Evaluation 
15.5 Summary 
References 

Index 

Dr. K R Venugopal is the Vice Chancellor of Bangalore University. He holds eleven degrees, including a Ph.D. in Computer Science Engineering from IIT-Madras, Chennai and a Ph.D. in Economics from Bangalore University. He also has degrees in Law, Mass Communication, Electronics, Economics, Business Finance, Computer Science, Public Relations and Industrial Relations. He has authored and edited 68 books and published more than 800 papers in refereed international journals and international conferences. Dr. Venugopal was a postdoctoral research scholar at the University of Southern California, USA. He has been conferred with IEEE fellow and ACM Distinguished Educator for his contributions to computer science engineering and electrical engineering education.
Dr. K C Srikantaiah is a Professor at the Department of Computer Science and Engineering at SJB Institute of Technology, Bangalore, India. He received his B.E. from Bangalore Institute of Technology, M.E. from University Visvesvaraya College of Engineering, Bangalore, in 2002 and Ph.D. degree in Computer Science and Engineering from Bangalore University in 2014. He has published 20 research papers and authored a book on Web mining algorithms. His research interests include data mining, Web mining, big data analytics, cloud analytics and the Semantic Web.
Dr. Sejal Santosh Nimbhorkar is an Associate Professor at B N M Institute of Technology. She has more than 15 years of industry, research and teaching experience. She holds M.E. and B.E. degrees in Computer Science and Engineering from University Visvesvaraya College of Engineering and Gujarat University, respectively. She has published 18 papers in refereed international journals and international conferences. She received an outstanding paper award at the 2015 European Conference on Data Mining. Dr. Nimbhorkar has also received project grants from Karnataka State Council for Science and Technology (KSCST). Her research interests include mining, Web mining, sentiment analysis and IoT.

This book focuses on Web recommender systems, offering an overview of approaches to develop these state-of-the-art systems. It also presents algorithmic approaches in the field of Web recommendations by extracting knowledge from Web logs, Web page content and hyperlinks. Recommender systems have been used in diverse applications, including query log mining, social networking, news recommendations and computational advertising, and with the explosive growth of Web content, Web recommendations have become a critical aspect of all search engines.
 
The book discusses how to measure the effectiveness of recommender systems, illustrating the methods with practical case studies. It strikes a balance between fundamental concepts and state-of-the-art technologies, providing readers with valuable insights into Web recommender systems.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia