• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Weak Convergence and Empirical Processes: With Applications to Statistics » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2952079]
• Literatura piękna
 [1850969]

  więcej...
• Turystyka
 [71058]
• Informatyka
 [151066]
• Komiksy
 [35579]
• Encyklopedie
 [23181]
• Dziecięca
 [620496]
• Hobby
 [139036]
• AudioBooki
 [1646]
• Literatura faktu
 [228729]
• Muzyka CD
 [379]
• Słowniki
 [2932]
• Inne
 [445708]
• Kalendarze
 [1409]
• Podręczniki
 [164793]
• Poradniki
 [480107]
• Religia
 [510956]
• Czasopisma
 [511]
• Sport
 [61267]
• Sztuka
 [243299]
• CD, DVD, Video
 [3411]
• Technologie
 [219640]
• Zdrowie
 [100984]
• Książkowe Klimaty
 [124]
• Zabawki
 [2281]
• Puzzle, gry
 [3363]
• Literatura w języku ukraińskim
 [258]
• Art. papiernicze i szkolne
 [8020]
Kategorie szczegółowe BISAC

Weak Convergence and Empirical Processes: With Applications to Statistics

ISBN-13: 9783031290381 / Angielski

A. W. van der Vaart;Jon A. Wellner
Weak Convergence and Empirical Processes: With Applications to Statistics A. W. van der Vaart Jon A. Wellner  9783031290381 Springer International Publishing AG - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Weak Convergence and Empirical Processes: With Applications to Statistics

ISBN-13: 9783031290381 / Angielski

A. W. van der Vaart;Jon A. Wellner
cena 563,56
(netto: 536,72 VAT:  5%)

Najniższa cena z 30 dni: 539,74
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

This book provides an account of weak convergence theory, empirical processes, and their application to a wide variety of problems in statistics. The first part of the book presents a thorough treatment of stochastic convergence in its various forms. Part 2 brings together the theory of empirical processes in a form accessible to statisticians and probabilists. In Part 3, the authors cover a range of applications in statistics including rates of convergence of estimators; limit theorems for M and Z estimators; the bootstrap; the functional delta-method and semiparametric estimation. Most of the chapters conclude with "problems and complements." Some of these are exercises to help the reader's understanding of the material, whereas others are intended to supplement the text. This second edition includes many of the new developments in the field since publication of the first edition in 1996: Glivenko-Cantelli preservation theorems; new bounds on expectations of suprema of empirical processes; new bounds on covering numbers for various function classes; generic chaining; definitive versions of concentration bounds; and new applications in statistics including penalized M-estimation, the lasso, classification, and support vector machines. The approximately 200 additional pages also round out classical subjects, including chapters on weak convergence in Skorokhod space, on stable convergence, and on processes based on pseudo-observations.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Twierdzenie Bayesa
Wydawca:
Springer International Publishing AG
Język:
Angielski
ISBN-13:
9783031290381

Preface (vii)
Reading Guide (ix)

​Part I: Stochastic Convergence 
1.1 Introduction: (1-6) 
1.2 Outer Integrals and Measurable Majorants: (7-16) 
1.3 Weak Convergence: (17 - 30) 
1.4 Product Spaces: (31-35) 
1.5 Spaces of Bounded Functions: (36 - 44) 
1.6 Spaces of Locally Bounded Functions: (45 - 46) 
1.7 The Ball Sigma-Field and Measurability of Suprema: (47 - 50) 
1.8 Hilbert Spaces: (51 - 53) 
1.9 Convergence: Almost surely and in probability: (54 - 58) 
1.10 Convergence: Weak, Almost Uniform, and in Probabil- ity: (59 - 68) 
1.11 Re_nements: (69 - 72) 
1.12 Uniformity and Metrization: (73 - 76) 
1.13 Skorokhod Space (new): (77 - 106) 
1.14 Notes: (107 - 111)

Part 2: Empirical Processes: (113 - 370) 
2.1 Introduction: (114 - 129) 
2.2 Maximal Inequalities and Covering Numbers: (130 - 151) 
2.3 Symmetrization and Measurability: (152 - 167) 
2.4 Glivenko-Cantelli Theorems: (168 - 174) 
2.5 Donsker Theorems: (175 - 181) 
2.6 Uniform Entropy Numbers: (182 - 206) 
2.7 Entropies of Function Classes (new title): (207 - 238) 
2.8 Uniformity in the Underlying Distribution: (239 - 248) 
2.9 Multiplier Central Limit Theorems: (249 - 262) 
2.10 Permanence of the Glivenko-Cantelli and Donsker Prop- erties: (263 - 279) 
2.11 The Central Limit Theorem for Processes: (280 - 299) 
2.12 Partial Sum Processes: (300 - 306) 
2.13 Other Donsker Classes: (307 - 312) 
2.14 Maximal Inequalities and Tail Bounds: (313 - 348) 
2.15 Concentration (new): (349 - 362) 
2.16 Notes: (363 - 370)

Part 3: Statistical Applications: (371 - 558) 
3.1 Introduction: (372 - 377) 
3.2 M-Estimators: (378 - 403) 
3.3 Z-Estimators: (404 - 415) 
3.4 Rates of Convergence: (416 - 456) 
3.5 Model Selection (new): (457 - 467) 
3.6 Random Sample Size, Poissonization, and Kac Processes: (468 - 473) 
3.7 Bootstrap: (474 - 488) 3.8 Two-Sample Problem: (489 - 495) 
3.9 Independence Empirical Processes: (496 - 500) 
3.10 Delta Method: (501 - 532)) 3.11 Contiguity: (533 - 543) 
3.12 Convolution and Minimax Theorems: (544 - 554) 
3.13 Random Empirical Processes: (555 - 572) 
3.14 Notes: (573 - 579) 

Appendix: (581 - 623) 
A.1 Inequalities: (582 - 589) 
A.2 Gaussian Processes: (590 - 605) 
A.3 Rademacher Processes: (606 - 607) 
A.4 Isoperimetric Inequalities for Product Measures: (608 - 612)) 
A.5 Some Limit Theorems: (613 - 615) 
A.6 More Inequalities: (616 - 621) 
Notes: (622 - 623)

References (637)
 Author Index (665)
Subject Index (669)
List of Symbols (676)


A.W. van der Vaart is a Professor of Statistics at Delft University, the Netherlands. He earned his Ph.D. in Mathematics from Leiden University. His research interests are in statistics and probability, as mathematical disciplines and in their applications to other sciences, with an emphasis on statistical models with large parameter spaces. He is a member of the Royal Netherlands Academy of Arts and Sciences and recipient of the Spinoza prize. He is a former president of the Netherlands Society for Statistics and Operations Research and served the national and international mathematical and statistical communities in various capacities. He has authored or co-authored eight books, one awarded with the DeGroot prize.

Jon A. Wellner is a Professor of Statistics at the University of Washington, Seattle. He earned his Ph.D. in Statistics from the University of Washington. His research interests include uses of large sample theory in statistics, theory of empirical processes and probability in high-dimensional settings, and efficient estimation for semiparametric models. He is also interested in statistical methods under shape constraints. He is a member of the American Association for the Advancement of Science, the Institute of Mathematical Statistics, the Bernoulli Society, and the International Statistical Institute, as well as the Mathematical Association of America, the Society for Industrial and Applied Mathematics, and the American Mathematical Society. He is a past President of the Institute of Mathematical Statistics, has served as an editor or co-editor of the Annals of Statistics and Statistical Science, and has co-authored or co-edited ten books.

This book provides an account of weak convergence theory, empirical processes, and their application to a wide variety of problems in statistics. The first part of the book presents a thorough treatment of stochastic convergence in its various forms. Part 2 brings together the theory of empirical processes in a form accessible to statisticians and probabilists. In Part 3, the authors cover a range of applications in statistics including rates of convergence of estimators; limit theorems for M− and Z−estimators; the bootstrap; the functional delta-method and semiparametric estimation. Most of the chapters conclude with “problems and complements.” Some of these are exercises to help the reader’s understanding of the material, whereas others are intended to supplement the text. 


This second edition includes many of the new developments in the field since publication of the first edition in 1996: Glivenko-Cantelli preservation theorems; new bounds on expectations of suprema of empirical processes; new bounds on covering numbers for various function classes; generic chaining; definitive versions of concentration bounds; and new applications in statistics including penalized M-estimation, the lasso, classification, and support vector machines. The approximately 200 additional pages also round out classical subjects, including chapters on weak convergence in Skorokhod space, on stable convergence, and on processes based on pseudo-observations.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia