• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Wavelets with Fourier Analysis » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2952079]
• Literatura piękna
 [1850969]

  więcej...
• Turystyka
 [71058]
• Informatyka
 [151066]
• Komiksy
 [35579]
• Encyklopedie
 [23181]
• Dziecięca
 [620496]
• Hobby
 [139036]
• AudioBooki
 [1646]
• Literatura faktu
 [228729]
• Muzyka CD
 [379]
• Słowniki
 [2932]
• Inne
 [445708]
• Kalendarze
 [1409]
• Podręczniki
 [164793]
• Poradniki
 [480107]
• Religia
 [510956]
• Czasopisma
 [511]
• Sport
 [61267]
• Sztuka
 [243299]
• CD, DVD, Video
 [3411]
• Technologie
 [219640]
• Zdrowie
 [100984]
• Książkowe Klimaty
 [124]
• Zabawki
 [2281]
• Puzzle, gry
 [3363]
• Literatura w języku ukraińskim
 [258]
• Art. papiernicze i szkolne
 [8020]
Kategorie szczegółowe BISAC

Wavelets with Fourier Analysis

ISBN-13: 9780470431177 / Angielski / Twarda / 2009 / 336 str.

Albert Boggess; Francis J. Narcowich
Wavelets with Fourier Analysis Boggess, Albert 9780470431177 John Wiley & Sons - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Wavelets with Fourier Analysis

ISBN-13: 9780470431177 / Angielski / Twarda / 2009 / 336 str.

Albert Boggess; Francis J. Narcowich
cena 524,40
(netto: 499,43 VAT:  5%)

Najniższa cena z 30 dni: 521,17
Termin realizacji zamówienia:
ok. 30 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

A comprehensive, self-contained treatment of Fourier analysis and wavelets--now in a new edition Through expansive coverage and easy-to-follow explanations, A First Course in Wavelets with Fourier Analysis, Second Edition provides a self-contained mathematical treatment of Fourier analysis and wavelets, while uniquely presenting signal analysis applications and problems. Essential and fundamental ideas are presented in an effort to make the book accessible to a broad audience, and, in addition, their applications to signal processing are kept at an elementary level. The book begins with an introduction to vector spaces, inner product spaces, and other preliminary topics in analysis. Subsequent chapters feature:

  • The development of a Fourier series, Fourier transform, and discrete Fourier analysis
  • Improved sections devoted to continuous wavelets and two-dimensional wavelets
  • The analysis of Haar, Shannon, and linear spline wavelets
  • The general theory of multi-resolution analysis
  • Updated MATLAB code and expanded applications to signal processing
  • The construction, smoothness, and computation of Daubechies' wavelets
  • Advanced topics such as wavelets in higher dimensions, decomposition and reconstruction, and wavelet transform
Applications to signal processing are provided throughout the book, most involving the filtering and compression of signals from audio or video. Some of these applications are presented first in the context of Fourier analysis and are later explored in the chapters on wavelets. New exercises introduce additional applications, and complete proofs accompany the discussion of each presented theory. Extensive appendices outline more advanced proofs and partial solutions to exercises as well as updated MATLAB routines that supplement the presented examples. A First Course in Wavelets with Fourier Analysis, Second Edition is an excellent book for courses in mathematics and engineering at the upper-undergraduate and graduate levels. It is also a valuable resource for mathematicians, signal processing engineers, and scientists who wish to learn about wavelet theory and Fourier analysis on an elementary level.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Matematyka stosowana
Mathematics > Infinity
Mathematics > Numerical Analysis
Wydawca:
John Wiley & Sons
Język:
Angielski
ISBN-13:
9780470431177
Rok wydania:
2009
Ilość stron:
336
Waga:
0.59 kg
Wymiary:
23.62 x 16.0 x 2.03
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia

"A first course in wavelets with Fourier analysis, second edition is an excellent book for courses in mathematics and engineering at the upper–undergraduate and graduate levels. It is also a valuable resource for mathematicians, signal processing engineers, and scientists who wish to learn about wavelet theory and Fourier analysis on an elementary level." (Mathematical Reviews, 2011)

"The discussions of applications avoid the deep jargon of signal processing accessible to a wider audience." (Book News, December 2009)

Preface and Overview ix

0 Inner Product Spaces 1

0.1 Motivation 1

0.2 Definition of Inner Product 2

0.3 The Spaces L2 and l2 4

0.3.1 Definitions 4

0.3.2 Convergence in L2 Versus Uniform Convergence 8

0.4 Schwarz and Triangle Inequalities 11

0.5 Orthogonality 13

0.5.1 Definitions and Examples 13

0.5.2 Orthogonal Projections 15

0.5.3 Gram Schmidt Orthogonalization 20

0.6 Linear Operators and Their Adjoints 21

0.6.1 Linear Operators 21

0.6.2 Adjoints 23

0.7 Least Squares and Linear Predictive Coding 25

0.7.1 Best–Fit Line for Data 25

0.7.2 General Least Squares Algorithm 29

0.7.3 Linear Predictive Coding 31

Exercises 34

1 Fourier Series 38

1.1 Introduction 38

1.1.1 Historical Perspective 38

1.1.2 Signal Analysis 39

1.1.3 Partial Differential Equations 40

1.2 Computation of Fourier Series 42

1.2.1 On the Interval x 42

1.2.2 Other Intervals 44

1.2.3 Cosine and Sine Expansions 47

1.2.4 Examples 50

1.2.5 The Complex Form of Fourier Series 58

1.3 Convergence Theorems for Fourier Series 62

1.3.1 The Riemann Lebesgue Lemma 62

1.3.2 Convergence at a Point of Continuity 64

1.3.3 Convergence at a Point of Discontinuity 69

1.3.4 Uniform Convergence 72

1.3.5 Convergence in the Mean 76

Exercises 83

2 The Fourier Transform 92

2.1 Informal Development of the Fourier Transform 92

2.1.1 The Fourier Inversion Theorem 92

2.1.2 Examples 95

2.2 Properties of the Fourier Transform 101

2.2.1 Basic Properties 101

2.2.2 Fourier Transform of a Convolution 107

2.2.3 Adjoint of the Fourier Transform 109

2.2.4 Plancherel Theorem 109

2.3 Linear Filters 110

2.3.1 Time–Invariant Filters 110

2.3.2 Causality and the Design of Filters 115

2.4 The Sampling Theorem 120

2.5 The Uncertainty Principle 123

Exercises 127

3 Discrete Fourier Analysis 132

3.1 The Discrete Fourier Transform 132

3.1.1 Definition of Discrete Fourier Transform 134

3.1.2 Properties of the Discrete Fourier Transform 135

3.1.3 The Fast Fourier Transform 138

3.1.4 The FFT Approximation to the Fourier Transform 143

3.1.5 Application: Parameter Identification 144

3.1.6 Application: Discretizations of Ordinary Differential Equations 146

3.2 Discrete Signals 147

3.2.1 Time–Invariant Discrete Linear Filters 147

3.2.2 Z–Transform and Transfer Functions 149

3.3 Discrete Signals & Matlab 153

Exercises 156

4 Haar Wavelet Analysis 160

4.1 Why Wavelets? 160

4.2 Haar Wavelets 161

4.2.1 The Haar Scaling Function 161

4.2.2 Basic Properties of the Haar Scaling Function 167

4.2.3 The Haar Wavelet 168

4.3 Haar Decomposition and Reconstruction Algorithms 172

4.3.1 Decomposition 172

4.3.2 Reconstruction 176

4.3.3 Filters and Diagrams 182

4.4 Summary 185

Exercises 186

5 Multiresolution Analysis 190

5.1 The Multiresolution Framework 190

5.1.1 Definition 190

5.1.2 The Scaling Relation 194

5.1.3 The Associated Wavelet and Wavelet Spaces 197

5.1.4 Decomposition and Reconstruction Formulas: A Tale of Two Bases 201

5.1.5 Summary 203

5.2 Implementing Decomposition and Reconstruction 204

5.2.1 The Decomposition Algorithm 204

5.2.2 The Reconstruction Algorithm 209

5.2.3 Processing a Signal 213

5.3 Fourier Transform Criteria 214

5.3.1 The Scaling Function 215

5.3.2 Orthogonality via the Fourier Transform 217

5.3.3 The Scaling Equation via the Fourier Transform 221

5.3.4 Iterative Procedure for Constructing the Scaling Function 225

Exercises 228

6 The Daubechies Wavelets 234

6.1 Daubechies Construction 234

6.2 Classification Moments and Smoothness 238

6.3 Computational Issues 242

6.4 The Scaling Function at Dyadic Points 244

Exercises 248

7 Other Wavelet Topics 250

7.1 Computational Complexity 250

7.1.1 Wavelet Algorithm 250

7.1.2 Wavelet Packets 251

7.2 Wavelets in Higher Dimensions 253

Exercises on 2D Wavelets 258

7.3 Relating Decomposition and Reconstruction 259

7.3.1 Transfer Function Interpretation 263

7.4 Wavelet Transform 266

7.4.1 Definition of the Wavelet Transform 266

7.4.2 Inversion Formula for the Wavelet Transform 268

Appendix A: Technical Matters 273

A.1 Proof of the Fourier Inversion Formula 273

A.2 Technical Proofs from Chapter 5 277

A.2.1 Rigorous Proof of Theorem 5.17 277

A.2.2 Proof of Theorem 5.10 281

A.2.3 Proof of the Convergence Part of Theorem 5.23 283

Appendix B: Solutions to Selected Exercises 287

Appendix C: MATLAB® Routines 305

C.1 General Compression Routine 305

C.2 Use of MATLAB s FFT Routine for Filtering and Compression 306

C.3 Sample Routines Using MATLAB s Wavelet Toolbox 307

C.4 MATLAB Code for the Algorithms in Section 5.2 308

Bibliography 311

Index 313

ALBERT BOGGESS, PhD, is Professor of Mathematics at Texas A&M University. Dr. Boggess has over twenty–five years of academic experience and has authored numerous publications in his areas of research interest, which include overdetermined systems of partial differential equations, several complex variables, and harmonic analysis.

FRANCIS J. NARCOWICH, PhD, is Professor of Mathematics and Director of the Center for Approximation Theory at Texas A&M University. Dr. Narcowich serves as an Associate Editor of both the SIAM Journal on Numerical Analysis and Mathematics of Computation, and he has written more than eighty papers on a variety of topics in pure and applied mathematics. He currently focuses his research on applied harmonic analysis and approximation theory.

A comprehensive, self–contained treatment of Fourier analysis and wavelets now in a new edition

Through expansive coverage and easy–to–follow explanations, A First Course in Wavelets with Fourier Analysis, Second Edition provides a self–contained mathematical treatment of Fourier analysis and wavelets, while uniquely presenting signal analysis applications and problems. Essential and fundamental ideas are presented in an effort to make the book accessible to a broad audience, and, in addition, their applications to signal processing are kept at an elementary level.

The book begins with an introduction to vector spaces, inner product spaces, and other preliminary topics in analysis. Subsequent chapters feature:

  • The development of a Fourier series, Fourier transform, and discrete Fourier analysis

  • Improved sections devoted to continuous wavelets and two–dimensional wavelets

  • The analysis of Haar, Shannon, and linear spline wavelets

  • The general theory of multi–resolution analysis

  • Updated MATLAB code and expanded applications to signal processing

  • The construction, smoothness, and computation of Daubechies′ wavelets

  • Advanced topics such as wavelets in higher dimensions, decomposition and reconstruction, and wavelet transform

Applications to signal processing are provided throughout the book, most involving the filtering and compression of signals from audio or video. Some of these applications are presented first in the context of Fourier analysis and are later explored in the chapters on wavelets. New exercises introduce additional applications, and complete proofs accompany the discussion of each presented theory. Extensive appendices outline more advanced proofs and partial solutions to exercises as well as updated MATLAB routines that supplement the presented examples.

A First Course in Wavelets with Fourier Analysis, Second Edition is an excellent book for courses in mathematics and engineering at the upper–undergraduate and graduate levels. It is also a valuable resource for mathematicians, signal processing engineers, and scientists who wish to learn about wavelet theory and Fourier analysis on an elementary level.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia