1. Die Anfänge.- 2. Fermat.- Biographisches.- Zahlentheoretische Sätze von Fermat.- Beweis des Zwei-Quadrate-Satzes.- Fermatsche (Pellsche) Gleichung.- „Fermatsches Problem“.- Literaturhinweise.- 3. Euler.- Summation einiger Reihen.- Bernoulli-Zahlen.- Trigonometrische Funktionen.- Biographisches.- Zetafunktion.- Partitionen.- Verschiedenes.- Literaturhinweise.- 4. Lagrange.- Biographisches.- Binäre quadratische Formen.- Reduktion der (positiv) definiten Formen.- Reduktion der indefiniten Formen.- Darstellbarkeit von Primzahlen.- Lösung der Fermatschen (Pellschen) Gleichung und Theorie der Kettenbrüche.- Literaturhinweise.- 5. Legendre.- Legendre-Symbol, Quadratisches Reziprozitätsgesetz.- Darstellung von Zahlen durch binäre quadratische.- Formen und quadratisches Reziprozitätsgesetz.- Biographisches.- Die Gleichung ax2+by2+cz2 = 0.- Legendres „Beweis“ des quadratischen Reziprozitätsgesetzes.- Literaturhinweise.- 6. Gauß.- Kreisteilung.- Gaußsche Summen.- Beweis des quadratischen Reziprozitätsgesetzes mit.- Kenntnis des Vorzeichens der Gaußschen Summen.- und ohne Kenntnis desselben.- Ring der ganzen Gaußschen Zahlen.- Zetafunktion zum Ring der ganzen Gaußschen Zahlen.- Ring der ganzen Zahlen im quadratischen Zahlkörper.- Zetafunktion zum Ring der ganzen Zahlen im quadratischen Zahlkörper.- Theorie der binären quadratischen Formen.- (Engere) Klassengruppe eines quadratischen Zahlkörpers.- Biographisches.- Literaturhinweise.- 7. Fourier.- Über Gott und die Welt.- Fourier-Reihen.- Summen von drei Quadraten und Laplace-Operator.- Literaturhinweise.- 8. Dirichlet.- Berechnung der Gaußschen Summen.- Primzahlen in arithmetischen Progressionen.- Nichtverschwinden der L-Reihe an der Stelle 1.- (a) Funktionentheoretischer Beweis von Landau.- (b) Dirichlets Nachweis durch direkte Berechnung.- Analytische Klassenzahlformel.- Zetafunktion eines quadratischen Zahlkörpers mit Klassenzahl 1.- Zerlegungsgesetz für Primzahlen in einem quadratischen Zahlkörper mit Klassenzahl 1.- Zerlegung der Zetafunktion und Residuum.- Bemerkungen zum Fall beliebiger Klassenzahl.- Biographisches.- Literaturhinweise.- 9. Von Hermite bis Minkowski.- Bilineare Räume.- Minima positiv definiter quadratischer Formen.- (a) nach Hermite.- (b) nach Minkowski.- Gitterpunktsatz von Minkowski.- und Anwendungen.- Biographisches.- Extreme Gitter.- Literaturhinweise.- 10. Ausblick: Reduktionstheorie.- Vorbetrachtungen über das Volumen des reduzierten Raumes und asymptotisches Wachstumsverhalten der Klassenzahl positiv definiter Formen.- Volumen des homogenen Raumes SL (n, ?) /SL (n, ?).- Volumen des reduzierten Raumes.- Literaturhinweise.- Namen- und Sachverzeichnis.
Winfried Scharlau, Jahrgang 1934, ist studierter Historiker, der 1960 mit einer Arbeit über Lenins Finazier-Parvus-Helphand in Oxford promoviert wurde. Seit 1964 war er Redakteur des Norddeutschen Rundfunks. Zwölf Jahre hat er als Fernsehkorrespondent der ARD im Fernen Osten verbracht. Nach 34 Jahren als Autor und Moderator hat er sich 2000 vom "Weltspiegel" verabschiedet. Er lebt heute als freier Autor in Hamburg.