• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods

ISBN-13: 9781447151845 / Angielski / Twarda / 2013 / 374 str.

Chris Aldrich; Lidia Auret
Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods Chris Aldrich Lidia Auret 9781447151845 Springer, Berlin - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods

ISBN-13: 9781447151845 / Angielski / Twarda / 2013 / 374 str.

Chris Aldrich; Lidia Auret
cena 645,58 zł
(netto: 614,84 VAT:  5%)

Najniższa cena z 30 dni: 616,85 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Algorithms for intelligent fault diagnosis of automated operations offer significant benefits to the manufacturing and process industries. Furthermore, machine learning methods enable such monitoring systems to handle nonlinearities and large volumes of data.This unique text/reference describes in detail the latest advances in Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections.Topics and features: reviews the application of machine learning to process monitoring and fault diagnosis; discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods; examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning; describes the use of spectral methods in process fault diagnosis.This highly practical and clearly-structured work is an invaluable resource for all researchers and practitioners involved in process control, multivariate statistics and machine learning.

Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Artificial Intelligence - General
Wydawca:
Springer, Berlin
Seria wydawnicza:
Advances in Computer Vision and Pattern Recognition
Język:
Angielski
ISBN-13:
9781447151845
Rok wydania:
2013
Wydanie:
2013
Numer serii:
000418995
Ilość stron:
374
Waga:
0.69 kg
Wymiary:
24.3 x 15.7 x 2.1
Oprawa:
Twarda
Wolumenów:
01

From the reviews:

"The text elaborates a range of classifiers used for supervised and unsupervised machine learning methods, for different types of processes. ... The rich examples of various industrial processes and the illustration of subsequent simulation results qualify the work as a reference textbook for graduate studies in machine learning." (C. K. Raju, Computing Reviews, October, 2013)

Introduction

Overview of Process Fault Diagnosis

Artificial Neural Networks

Statistical Learning Theory and Kernel-Based Methods

Tree-Based Methods

Fault Diagnosis in Steady State Process Systems

Dynamic Process Monitoring

Process Monitoring Using Multiscale Methods

Algorithms for intelligent fault diagnosis of automated operations offer significant benefits to the manufacturing and process industries. Furthermore, machine learning methods enable such monitoring systems to handle nonlinearities and large volumes of data.

This unique text/reference describes in detail the latest advances in Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections.

Topics and features:

  • Reviews the application of machine learning to process monitoring and fault diagnosis
  • Discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods
  • Examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning
  • Describes the use of spectral methods in process fault diagnosis

This highly practical and clearly-structured work is an invaluable resource for all researchers and practitioners involved in process control, multivariate statistics and machine learning.

Dr. Chris Aldrich is a Professor in the Department of Metallurgical and Minerals Engineering at Curtin University, Perth, Australia. Dr. Lidia Auret is a Lecturer in the Department of Process Engineering at Stellenbosch University, South Africa.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia