• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Uncertainty Handling and Quality Assessment in Data Mining » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2939893]
• Literatura piękna
 [1808953]

  więcej...
• Turystyka
 [70366]
• Informatyka
 [150555]
• Komiksy
 [35137]
• Encyklopedie
 [23160]
• Dziecięca
 [608786]
• Hobby
 [136447]
• AudioBooki
 [1631]
• Literatura faktu
 [225099]
• Muzyka CD
 [360]
• Słowniki
 [2914]
• Inne
 [442115]
• Kalendarze
 [1068]
• Podręczniki
 [166599]
• Poradniki
 [468390]
• Religia
 [506548]
• Czasopisma
 [506]
• Sport
 [61109]
• Sztuka
 [241608]
• CD, DVD, Video
 [3308]
• Technologie
 [218981]
• Zdrowie
 [98614]
• Książkowe Klimaty
 [124]
• Zabawki
 [2174]
• Puzzle, gry
 [3275]
• Literatura w języku ukraińskim
 [260]
• Art. papiernicze i szkolne
 [7376]
Kategorie szczegółowe BISAC

Uncertainty Handling and Quality Assessment in Data Mining

ISBN-13: 9781852336554 / Angielski / Twarda / 2003 / 226 str.

Michalis Vazirigiannis; A. V. Nebylov; Michalis Vazirgiannis
Uncertainty Handling and Quality Assessment in Data Mining Michalis Vazirigiannis A. V. Nebylov Michalis Vazirgiannis 9781852336554 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Uncertainty Handling and Quality Assessment in Data Mining

ISBN-13: 9781852336554 / Angielski / Twarda / 2003 / 226 str.

Michalis Vazirigiannis; A. V. Nebylov; Michalis Vazirgiannis
cena 200,77
(netto: 191,21 VAT:  5%)

Najniższa cena z 30 dni: 192,74
Termin realizacji zamówienia:
ok. 22 dni roboczych.

Darmowa dostawa!

Uncertainty Handling and Quality Assessment in Data Mining provides an introduction to the application of these concepts in Knowledge Discovery and Data Mining. It reviews the state-of-the-art in uncertainty handling and discusses a framework for unveiling and handling uncertainty. Coverage of quality assessment begins with an introduction to cluster analysis and a comparison of the methods and approaches that may be used. The techniques and algorithms involved in other essential data mining tasks, such as classification and extraction of association rules, are also discussed together with a review of the quality criteria and techniques for evaluating the data mining results. This book presents a general framework for assessing quality and handling uncertainty which is based on tested concepts and theories. This framework forms the basis of an implementation tool, 'Uminer' which is introduced to the reader for the first time. This tool supports the key data mining tasks while enhancing the traditional processes for handling uncertainty and assessing quality. Aimed at IT professionals involved with data mining and knowledge discovery, the work is supported with case studies from epi

Kategorie:
Informatyka
Kategorie BISAC:
Computers > Artificial Intelligence - General
Computers > Data Science - Data Modeling & Design
Computers > Internet - General
Wydawca:
Springer
Seria wydawnicza:
Advanced Information and Knowledge Processing,
Język:
Angielski
ISBN-13:
9781852336554
Rok wydania:
2003
Wydanie:
2003
Ilość stron:
226
Waga:
0.52 kg
Wymiary:
23.5 x 15.5
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Wydanie ilustrowane

Data Mining Process.- 2.1 Introduction to the Main Concepts of Data Mining.- 2.2 Knowledge and Data Mining.- 2.2.1 Knowledge Discovery in Database vs Data Mining.- 2.3 The Data Mining Process.- 2.3.1 Data Mining Requirements.- 2.4 Classification of Data Mining Methods.- 2.5 Overview of Data Mining Tasks.- 2.5.1 Clustering.- 2.5.1.1 Overview of Clustering Algorithms.- 2.5.1.2 Comparison of Clustering Algorithms.- 2.5.2 Classification.- 2.5.2.1 Bayesian Classification.- 2.5.2.2 Decision Trees.- 2.5.2.3 Neural Networks.- 2.5.2.4 Nearest Neighbor Classification.- 2.5.2.5 Support Vector Machines (SVMs).- 2.5.2.6 Fuzzy Classification approaches.- 2.5.3 Induction of classification rules.- 2.5.4 Association Rules.- 2.5.5 Sequential Patterns.- 2.5.6 Time Series Similarity.- 2.5.7 Visualization and Dimensionality Reduction.- 2.5.8 Regression.- 2.5.9 Summarization.- 2.6 Summary.- References.- Quality Assessment in Data Mining.- 3.1 Introduction.- 3.2 Data Pre-processing and Quality Assessment.- 3.3 Evaluation of Classification Methods.- 3.3.1 Classification Model Accuracy.- 3.3.1.1 Alternatives to the Accuracy Measure.- 3.3.2 Evaluating the Accuracy of Classification Algorithms.- 3.3.2.1 McNemar’s Test.- 3.3.2.2 A Test for the Difference of Two Proportions.- 3.3.2.3 The Resampled Paired t Test.- 3.3.2.4 The k-fold Cross-validated Paired t Test.- 3.3.3 Interestingness Measures of Classification Rules.- 3.3.3.1 Rule-Interest Function.- 3.3.3.2 Smyth and Goodman’s J-Measure.- 3.3.3.3 General Impressions.- 3.3.3.4 Gago and Bento’s Distance Metric.- 3.4 Association Rules.- 3.4.1 Association Rules Interestingness Measures.- 3.4.1.1 Coverage.- 3.4.1.2 Support.- 3.4.1.3 Confidence.- 3.4.1.4 Leverage.- 3.4.1.5 Lift.- 3.4.1.6 Rule Templates.- 3.4.1.7 Gray and Orlowska’s Interestingness.- 3.4.1.8 Dong and Li’s Interestingness.- 3.4.1.9 Peculiarity.- 3.4.1.10 Closed Association Rules Mining.- 3.5 Cluster Validity.- 3.5.1 Fundamental Concepts of Cluster Validity.- 3.5.2 External and Internal Validity Indices.- 3.5.2.1 Hypothesis Testing in Cluster Validity.- 3.5.2.2 External Criteria.- 3.5.2.3 Internal Criteria.- 3.5.3 Relative Criteria.- 3.5.3.1 Crisp Clustering.- 3.5.3.2 Fuzzy Clustering.- 3.5.4 Other Approaches for Cluster Validity.- 3.5.5 An Experimental Study on cluster validity.- 3.5.5.1 A Comparative Study.- 3.6 Summary.- References.- Uncertainty Handling in Data Mining.- 4.1 Introduction.- 4.2 Basic Concepts on Fuzzy Logic.- 4.2.1 Fuzzy Set Theory.- 4.2.2 Membership Functions.- 4.2.2.1 Hypertrapezoidal Fuzzy Membership Functions.- 4.2.2.2 Joint Degree of Membership.- 4.2.3 Fuzzy Sets and Information Measures.- 4.3 Basic Concepts on Probabilistic Theory.- 4.3.1 Uncertainty Quantified Probabi1istically.- 4.3.1.1 Bayesian Theorem.- 4.4 Probabilistic and Fuzzy Approaches.- 4.5 The EM Algorithm.- 4.5.1 General Description of EM Algorithm.- 4.6 Fuzzy Cluster Analysis.- 4.6.1 Fuzzy C-Means and its Variants.- 4.6.2 Fuzzy C-Means for Object-Data.- 4.6.3 Fuzzy C-Means (FCM) Alternatives.- 4.6.4 Applying Fuzzy C-Means Methodology to Relational Data.- 4.6.5 The Fuzzy C-Means Algorithm for Relational data.- 4.6.5.1 Comments on FCM for Relational Data.- 4.6.6 Noise Fuzzy Clustering Algorithm.- 4.6.7 Conditional Fuzzy C-Means Clustering.- 4.7 Fuzzy Classification Approaches.- 4.7.1 Fuzzy Decision Trees.- 4.7.1.1 Building a Fuzzy Decision Tree.- 4.7.1.2 Inference for Decision Assignment.- 4.7.2 Fuzzy Rules.- 4.8 Managing Uncertainty and Quality in the Classification Process.- 4.8.1 Framework Description.- 4.8.2 Mapping to the Fuzzy Domain.- 4.8.2.1 Classification Space (CS).- 4.8.2.2 Classification Value Space (CVS).- 4.8.3 Information Measures for Decision Support.- 4.8.3.1 Class Energy Metric.- 4.8.3.2 Attribute Energy Metric.- 4.8.4 Queries & Decision Support.- 4.8.5 Classification Scheme Quality Assessment.- 4.9 Fuzzy Association Rules.- 4.9.1 Defining Fuzzy Sets.- 4.9.2 Fuzzy Association Rule Definition.- 4.9.2.1 Fuzzy Support.- 4.9.2.2 Fuzzy Confidence.- 4.9.2.3 Fuzzy Correlation.- 4.9.3 Mining Fuzzy Association Rules Algorithms.- 4.10 Summary.- References.- UMiner: A Data Mining System Handling Uncertainty and Quality.- 5.1 Introduction.- 5.2 UMiner Development Approach.- 5.3 System Architecture.- 5.4 UMiner’s Data Mining Tasks.- 5.5 Demonstration.- 5.5.1 Clustering process.- 5.6 Summary.- References.- Case Studies.- 6.1 Extracting Association Rules for Medical Data Analysis.- 6.2 The Mining Process.- 6.2.1 Collection of Data.- 6.2.2 Data Cleaning and Pre-processing.- 6.2.3 Further Analysis of Extracted Association Rules.- 6.3 Cluster Analysis of Epidemiological Data.- References.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia