ISBN-13: 9788328908116 / Polski / broszurowa / 2024 / 392 str.
W ciągu ostatnich lat techniki uczenia maszynowego rozwijały się z niezwykłą dynamiką, rewolucjonizując pracę w różnych branżach. Obecnie do uczenia maszynowego najczęściej używa się Pythona i jego bibliotek. Znajomość najnowszych wydań tych narzędzi umożliwia efektywne tworzenie wyrafinowanych systemów uczących się. Oto zaktualizowane wydanie popularnego przewodnika, dzięki któremu skorzystasz z ponad dwustu sprawdzonych receptur bazujących na najnowszych wydaniach bibliotek Pythona. Wystarczy, że skopiujesz i dostosujesz kod do swoich potrzeb. Możesz też go uruchamiać i testować za pomocą przykładowego zbioru danych. W książce znajdziesz receptury przydatne do rozwiązywania szerokiego spektrum problemów, od przygotowania i wczytania danych aż po trenowanie modeli i korzystanie z sieci neuronowych. W ten sposób wyjdziesz poza rozważania teoretyczne czy też matematyczne koncepcje i zaczniesz tworzyć aplikacje korzystające z uczenia maszynowego. Poznaj receptury dotyczące: - pracy z danymi w wielu formatach, z bazami i magazynami danych- redukcji wymiarowości, jak również oceny i wyboru modelu- regresji liniowej i logistycznej, drzew i lasów, a także k-najbliższych sąsiadów- maszyn wektorów nośnych (SVM), naiwnej klasyfikacji bayesowskiej i klasteryzacji- udostępniania wytrenowanych modeli za pomocą wielu frameworków
W ciągu ostatnich lat techniki uczenia maszynowego rozwijały się z niezwykłą dynamiką, rewolucjonizując pracę w różnych branżach. Obecnie do uczenia maszynowego najczęściej używa się Pythona i jego bibliotek. Znajomość najnowszych wydań tych narzędzi umożliwia efektywne tworzenie wyrafinowanych systemów uczących się. Oto zaktualizowane wydanie popularnego przewodnika, dzięki któremu skorzystasz z ponad dwustu sprawdzonych receptur bazujących na najnowszych wydaniach bibliotek Pythona. Wystarczy, że skopiujesz i dostosujesz kod do swoich potrzeb. Możesz też go uruchamiać i testować za pomocą przykładowego zbioru danych. W książce znajdziesz receptury przydatne do rozwiązywania szerokiego spektrum problemów, od przygotowania i wczytania danych aż po trenowanie modeli i korzystanie z sieci neuronowych. W ten sposób wyjdziesz poza rozważania teoretyczne czy też matematyczne koncepcje i zaczniesz tworzyć aplikacje korzystające z uczenia maszynowego. Poznaj receptury dotyczące: - pracy z danymi w wielu formatach, z bazami i magazynami danych- redukcji wymiarowości, jak również oceny i wyboru modelu- regresji liniowej i logistycznej, drzew i lasów, a także k-najbliższych sąsiadów- maszyn wektorów nośnych (SVM), naiwnej klasyfikacji bayesowskiej i klasteryzacji- udostępniania wytrenowanych modeli za pomocą wielu frameworków