1. Overview of the Global Positioning System 111.1. Introduction 121.2. Applications of GNSS 141.3. GPS Segments 171.3.1. Space Segment 171.3.2. Control Segment 211.3.3. User Segment 231.4. Keplerian Orbits 271.5. Satellite Broadcast 331.5.1. Carrier Frequencies 331.5.2. Digital Modulation 341.5.3. Ranging Codes 411.5.4. Navigation Message 472. Principles of GNSS Positioning 572.1. Introduction 582.2. Basic GNSS Observables 602.2.1. Pseudorange 602.2.2. Carrier Phase 622.2.3. Doppler Shift 682.3. GNSS Error Sources 732.3.1. Clock and Ephemeris Errors 742.3.2. Relativistic Effects 762.3.3. Carrier Phase Wind-Up 822.3.4. Atmospheric Effects 832.3.5. Multipath, Diffraction, and Interference Effects 832.3.6. Hardware-Related Errors 872.3.7. Dilution of Precision 892.3.8. Additional Error Sources 902.4. Point Positioning 912.4.1. Positioning Using Pseudorange 922.4.2. Accounting for Random Error 972.4.3. Dilution of Precision 1022.5. Data Combinations and Relative Positioning 1072.5.1. Multi-Frequency Combinations 1072.5.2. Relative Positioning 1133. Tropospheric Propagation 1213.1. Introduction 1213.2. Tropospheric Group Delay 1223.3. Tropospheric Refraction 1283.4. Extinction 1323.4.1. Beer-Lambert Law 1323.4.2. Scattering 1363.4.3. Gaseous Absorption 1373.4.4. Hydrometeor Attenuation 1403.5. Tropospheric Scintillations 1424. Predictive Models of the Troposphere 1454.1. Introduction 1454.2. Saastamoinen Model 1454.3. Hopfield Model 1594.4. U.S. Standard Atmosphere 1634.4.1. Model Assumptions 1644.4.2. Computational Equations 1754.4.3. Data Sources and Implementation 1785. Physics of the Ionosphere 1815.1. Introduction 1825.2. Solar-Terrestrial Relations 1835.2.1. The Sun 1835.2.2. The Interplanetary Medium 1865.2.3. Earth's Magnetic Field 1885.2.4. The Magnetosphere 1965.2.5. Earth's Atmosphere 2005.3. Physics of Ionization 2035.3.1. Neutral Atmosphere 2035.3.2. Ionization 2065.3.3. Recombination and Attachment 2095.3.4. Photochemical Processes in the Ionosphere 2105.4. Chapman's Theory of Ionospheric Layer Formation 2135.5. Plasma Transport 2225.5.1. Diffusion 2235.5.2. Neutral Winds 2265.5.3. Electromagnetic Drift 2285.5.4. Combined Effects of Neutral Wind and Electromagnetic Drift 2315.5.5. Continuity Equation 2376. Experimental Observation of the Ionosphere 2396.1. Introduction 2406.2. Ionospheric Measurement Techniques 2426.2.1. Ionosondes 2426.2.2. Incoherent Scatter Radar 2546.2.3. In Situ Measurements 2626.3. Morphology of the Ionosphere 2696.4. Variability of the Ionosphere 2766.4.1. F2 Layer Anomalies 2766.4.2. Solar Activity 2826.4.3. Magnetic Variation 2866.4.4. Ionospheric Irregularities 2987. Ionospheric Propagation 3037.1. Introduction 3047.2. Magnetoionic Propagation 3057.3. Propagation Effects of the Background Ionosphere 3157.3.1. Total Electron Content 3177.3.2. Ionospheric Refraction 3227.3.3. Group Delay and Phase Advance 3257.3.4. Dispersion 3347.3.5. Faraday Rotation 3357.3.6. Absorption 3387.4. Scintillations 3418. Predictive Models of the Ionosphere 3518.1. Introduction 3528.2. Group Delay Models for Single-Frequency GNSS Receivers 3538.2.1. Klobuchar Model 3538.2.2. NeQuick 3638.3. Global Ionospheric Scintillation Model 3738.3.1. Ray Tracing in the Ionosphere 3738.3.2. Multiple Phase Screen Method 3758.4. International Reference Ionosphere 3798.4.1. Data Sources, Inputs, and Outputs 3818.4.2. Important Functions 3878.4.3. Characteristic Heights and Electron Densities 3928.4.4. Electron Density 4008.4.5. Electron Temperature 4168.4.6. Ion Temperature 4228.4.7. Ion Composition 4248.4.8. Additional Parameters 427Appendices 431A. Review of Electromagnetics Concepts 433A.1. Electromagnetic Waves 434A.1.1. Maxwell's Equations and the Wave Equation 434A.1.2. Plane Wave Solutions 436A.1.3. Constraints Via Maxwell's Equations 440A.1.4. Poynting Vector 443A.2. Phase and Group Velocity 446A.2.1. Phase Velocity 446A.2.2. Modulated Signals and Group Velocity 446A.2.3. Group Index of Refraction 448A.2.4. Relationship Between Phase and Group Velocities 449A.3. Polarization 450A.3.1. Linear Polarization 450A.3.2. Circular Polarization 452A.3.3. Elliptical Polarization 455A.3.4. Jones Vectors and Decomposing Polarizations 457A.4. Derivation of Rayleigh Scattering 462B. Electromagnetic Properties of Media 473B.1. Introduction 474B.2. Dielectric Polarization 475B.2.1. Induced Dielectric Polarization 475B.2.2. Electric Susceptibility 476B.3. Lossy and Dispersive Media 478B.3.1. Absorption 478B.3.2. Dispersion 478B.3.3. Graphical Analysis 479B.3.4. Multiple Resonances 482B.4. Conducting Media 484B.4.1. Time-Varying Conduction Current 484B.4.2. Propagation in Conducting Media 485B.4.3. Combined Effects of Dispersion and Conduction 488B.5. Kramers-Kronig Relations 489B.6. Anisotropic Media 492B.6.1. Dielectric Tensor Properties 492B.6.2. Wave Equation in Anisotropic Media 494B.6.3. Optical Axes 496B.6.4. Index Ellipsoid 499B.6.5. Phase and Group Velocity in Anisotropic Media 501B.6.6. Birefringence and Spatial Walk-o_ in ~k Surfaces 503B.7. Gyrotropic Media 506B.7.1. Gyrotropic Susceptibility Tensor 506B.7.2. Propagation in Gyrotropic Media 509Bibliography 513
Timothy H. Kindervatter is an Associate Scientist at SciTec, Inc., where he develops scientific instrumentation in support of U.S. government defense contracts. His experience also includes a study on the effects of atmospheric aerosols and molecular species on UV scattering.Fernando L. Teixeira, PhD, is Professor of Electrical Engineering at Ohio State University. He is a Fellow of the IEEE and has served as Principal Investigator on projects sponsored by the Department of Defense, the Department of Energy, the National Science Foundation, and NASA.