ISBN-13: 9783642463778 / Angielski / Miękka / 2012 / 446 str.
ISBN-13: 9783642463778 / Angielski / Miękka / 2012 / 446 str.
This second Volume in the series on Membrane Transport in Biology contains a group of essays on transport across single biological membranes separating the inside and outside of cells or organelles. We have not attempted to include material on all types of plasma and intracellular membranes, but rather have emphasized structures which have been studied relatively thoroughly. Four chapters describe transport of different types of molecules and ions across the plasma membranes of mammalian red cells. Two essays concern the excitable membranes of nerve and muscle cells while the remaining four chapters treat transport across several types of intracellular membranes. Water makes up more than two-thirds of the mass of most living cells. The transport of water between the inside and outside of cells and organelles is important for the function of these structures. As a result of investigations in many laboratories over the past four decades, our picture of the water permea bility of the red cell membranes is rather detailed when compared to the water permeability of other biological membranes. In Chapter 1, R. I. Macey describes this picture and also considers the permeability of red cell membranes to non electrolytes, including metabolic substrates such as sugars, amino acids, purines and nucleosides."
1 — Transport of Water and Nonelectrolytes Across Red Cell Membranes.- A. Introduction.- B. Osmotic Equilibria.- C. Methods for Permeability Measurements.- I. Exchange Time.- 1. Continuous Flo.- 2. Diffusio.- 3. Magnetic Spectroscop.- II. Osmotic Method.- 1. Hemolysis Time.- 2. Stop-Flow and Rapid Injectio.- 3. Microcine Photograph.- D. Kinetics of Osmotically Induced Volume Changes.- I. Kedem-Katchalsky Equation.- II. Osmotic Water Permeability.- 1. Nonlinear Case.- 2. Small Perturbations.- III. Solute Permeability.- 1. Minimum Volume Method.- 2. Maximum Slope Method.- 3. Volume Clamp Method.- 4. Small Perturbation Method.- a) Double Exponentials.- b) Single Exponentials.- c) Slow Kinetics.- 5. Reflection Coefficients: Zero Time Method.- E. Water Permeability.- I. Osmotic and Diffusional Permeability.- 1. Unstirred Layers.- 2. Pores.- II. Rectification.- III. Temperature Dependence.- IV. Action of Mercurials on Water Channels.- 1. Closing the Channels.- 2. Characterizing the Sites.- V. Miscellaneous Factors Influencing Water Permeability.- F. Nonelectrolyte Permeability.- I. Transport Through the Lipid Bilayer.- 1. Overton’s Rules.- 2. Collander Plots.- a) Partition Coefficients.- b) Membrane Diffusion Coefficient.- c) Comparison of Red Cells with Liposomes.- 3. Deviations from Collander Plots.- a) Interfacial Rate Processes.- b) Inhomogenous Membrane.- c) Organic Solvent.- d) Alternate Paths.- II. Pores.- 1. Independence of Solute and Water Permeability.- 2. Separation of Hydrophilic and Lipophilic Solutes.- a) Molar Volume and Partition Coefficient.- b) Temperature Dependence.- c) Comparison of Red Cells and “Doped” Bilayers.- d) Are Pores Necessary?.- III. Facilitated Diffusion.- 1. Monosaccharides.- 2. Glycerol.- 3. Aminoacids.- 4. Purines.- 5. Nucleosides.- 6. Urea.- G. Water-Solute Flow Interactions.- I. Reflection Coefficients.- II. Frictional Coefficients.- III. Solute Permeability in Narrow Pores.- Acknowledgements.- References.- 2 — Transport of Anions Across Red Cell Membranes.- A. Introduction.- I. Early Studies of Chloride and Bicarbonate Exchange.- II. Transport of Carbon Dioxide as Bicarbonate Anions.- III. Recent Progress and Reviews.- B. The Fixed-Charge Model.- C. The Concentration Dependence of Anion Fluxes.- I. Alteration of Cell Anion Concentration.- II. Characteristics.- 1. Saturation.- 2. Self-Inhibition at the Chloride-2 Site.- D. Temperature Dependence of Anion Exchange.- I. Porous Membrane Versus Carrier-Mediated Transport.- II. Slow Exchanges Versus Rapid Exchanges.- III. Independence of Activation Energies.- E. Inhibitors of Anion Exchange.- F. The Titratable Carrier: New Evidence.- I. The Titratable-Carrier Model.- II. Formation of Carrier for Monovalent Anion from Noncarrier Form at High pH.- III. Interconversion of Monovalent and Divalent Carriers.- G. The Relationship Between the Net Pathway and the Exchange Pathway for Anions in Red Blood Cells.- I. Fixed-Charge Porous Membrane.- II. Carrier-Mediated Conductance.- 1. Conductance and Exchange Activation Energies.- 2. Magnitude of Chloride and Sulfate Conductance.- 3. Inhibition.- a) Stilbenes and Dipyridamole.- b) Phloretin.- c) Alkali Inhibition.- d) Summary.- H. Membrane Structure and Biochemistry Related to Anion Transport.- References.- 3 — Passive Cation Fluxes in Red Cell Membranes.- A. Introduction.- I. On the Active Role of Passive Fluxes in Biological Membranes.- II. Pumps and Dissipators.- III. The Ground Permeability.- IV. The Magnitude of the Dissipative Fluxes.- V. Polymorphism and Interspecific Variation in Red Cells.- VI. Resting and Activity Dissipators.- VII. The Passive Cation Fluxes in Red Cell Membranes.- B. The Passive Fluxes of Na+and K+in Red Cell Membranes.- I. Historical Introduction.- II. The Fluxes of Na+.- III. The Fluxes of K+.- IV. The Nature of the Passive K+ Fluxes.- V. The Fluxes of Foreign Alkali-Metal Ions.- C. A Unified View of Na+ and K+ Transport in Red Cells.- I. The Two Alternatives.- II. The “All Pump” Model.- III. The Viability of the Model.- IV. Predictions of the “All Pump” Model.- V. Na+ and K+ Fluxes in Human Red Cells According to the “All Pump” Model.- D. A Ca++ -Sensitive K+-Permeability Mechanism in the Red Cell Membrane.- I. Introduction.- II. The “Gardos Effect”.- III. The Effect of Combining a Metabolic Substrate and a Glycolytic Inhibitor on the ATP Content of Red Cells.- IV. Entry of Ca++, Cytoplasmic Ca++ Buffering and the Ca++ Sensitivity of the K+ Gate.- V. The Gating Process.- VI. The Movement of K+ through the Ca++ -Sensitive Permeability Mechanism.- Acknowledgements.- References.- 4 — Active Cation Transport in Human Red Cells.- A. Introduction.- B. Active Na+-K+ Transport in Human Red Cells.- I. Introduction.- II. Characteristics of Na+-K+ Pump in Red Cells.- 1. Modes of Operation.- a) Normal Mode of Operation — Coupled Na+-K+ Transport at the Expense of ATP Splitting.- b) Reverse Operation of the Pump — ATP Synthesis at the Expense of Na+-K+Transport.- c) Na+-Na+Exchange Mediated by the Pump.- d) K+-K+ Exchange Mediated by the Pump.- e) Uncoupled Na+ Extrusion by the Pump.- 2. Inhibitors of the Na+-K+Pump.- a) Cardiac Glycosides — Ouabain.- b) Other Inhibitors of the Na+-K+ Pump.- III. Enzymatic Basis of the Active Na+-K+Transport.- 1. General Characteristics of the Na+-K+Activated ATPase.- 2. The Nature of Reaction Catalyzed by the Na+-K+-ATPase.- 3. Isolation and Purification of Na+-K+-ATPase — Reconstitution of the Pump.- IV. Transport Mechanism and Stoichiometry of the Na+-K+Pump.- V. Some Cellular Functions of the Na+-K+Pump.- 1. Regulation of Cell Volume.- 2. Na+-Dependent Co-and Countertransport.- C. Active Ca++Transport in Human Red Cells.- I. Introduction.- II. Characteristics of Ca++Transport in Red Cells.- 1. Inward Ca++Movement-Loading of Red Cells with Ca++.- 2. Evidence for an Active Ca++Extrusion-Basic Features.- a) The Role of ATP and Mg++.- b) Effect of Ca++ Concentration on Active Ca++ Iransport.- c) Effects of Monovalent and Divalent Cations on Active Ca++ Extrusion.- d) Dependence of Active Ca++ Transport on Temperature and pH.- e) Effects of Drugs on Active Ca++ Transport.- III. The Enzymatic Basis of Active Ca++ Extrusion.- IV. Transport Model and Stoichiometry of the Ca++ Pump in Red Cells.- V. Cellular Function of Active Ca++ Extrusion in Human Red Cells.- 1. Inhibition of the Na+ -K+ Pump by Intracellular Ca++.- 2. Increase in K+ Transport by Intracellular Ca++ (Gárdos Effect).- 3. Changes in the Mechanical Properties of the Red Cell Membrane Induced by Internal Ca++.- VI. Comparison of the Active Ca++ Extrusion in Human Red Cells with Other Systems Transporting Ca++.- References.- 5 — Transport Across Axon Membranes.- A. Introduction.- B. Methods for Transport Studies.- I. Introduction.- II. Immersion.- III. Injection.- IV. Internal Perfusion.- V. Internal Dialysis.- C. Transport During Bioelectric Activity.- I. Sodium.- II. Potassium.- III. Chloride.- IV. Leakage Fluxes.- V. Other Ions.- VI. Nonelectrolytes.- D. Active Transport.- I. Introduction.- II. Sodium Influx.- 1. Diffusion.- 2. ATPi-Dependent Na+ Influx.- 3. Na+i-Dependent Na+ Influx.- III. Sodium Efflux.- 1. Introduction.- 2. Passive Na+ Efflux.- 3. Inhibitors of Na+ Efflux.- 4. The Substrate for the Na+ Pump.- 5. K+-Dependent Na+ Efflux.- 6. Uncoupled Na+ Efflux.- 7. Nat-Dependent Na+ Efflux.- 8. Ca++-Dependent Na+ Efflux.- 9. Protease-Induced Na+ Efflux.- 10. Na+ Efflux in Low-Ionic-Strength Solutions.- 11. Strophanthidin-Induced Na+ Efflux.- 12. Na+ Efflux Under Physiological Conditions.- IV. Potassium Influx.- V. Potassium Efflux.- VI. Coupling Between Sodium and Potassium Fluxes.- 1. Effect of K+o.- 2. Effect of Na+i.- 3. Electrogenic Pumping.- 4. Implications for Models of Transport.- VII. Chloride Fluxes.- 1. Values for [Cl]i.- 2. Effects of Inhibitors on Cl? Fluxes.- VIII. Calcium Fluxes.- 1. Introduction.- 2. [Ca++]in Axoplasm.- IX. Calcium Influx.- 1. Introduction.- 2. Inhibitors of Ca++ Influx.- X. Calcium Efflux.- 1. Introduction.- 2. Nao-Cai Exchange.- 3. Effect of ATP on Ca Efflux.- 4. Electrogenic Ca Transport.- 5. Concentration Dependence of Ca Efflux.- 6. Cao and Nao Dependence of Ca Efflux.- 7. Effects of Nai on Ca Efflux.- 8. Effect of CN on Ca Efflux.- 9. Intracellular Ca Buffering.- 10. Physiological Ca Fluxes.- XI. Magnesium Fluxes in Squid Axons.- References.- 6 — Ionic Movements Across the Plasma Membrane of Skeletal Muscle Fibers.- A. Introduction.- B. Sodium Movements.- I. EarlyWork.- II. Na+ Efflux.- 1. Active Na+ Transport.- a) General Characteristics. Influence of [K+]o and Vm.- b) Linkage Between Na+and K+ Active Fluxes.- c) Ouabain Binding.- 2. Role of [Na+]o. Effects of its Substitution by Other Ions.- 3. Membrane Location of the Na+ Movements.- III. Na+ Influx.- 1. Resting Na+ Influx.- 2. Na+ Movement During Activity.- a) Flux Measurements.- b) Electrophysiological Data.- 3. Na+ Channels: Density and Distribution.- C. Potassium Movements.- I. Resting K+ Movements.- 1. Electrophysiological Data.- 2. K+ Flux Measurements.- a) K+ Unidirectional Fluxes.- b) Influence of Na+ on K+ Fluxes.- II. K+ Movements During Activity.- 1. Electrophysiological Data.- 2. Flux Measurements.- D. Chloride Movements.- I. Membrane Potential and Cl? Movements.- II. Membrane Location of the Cl? Movements.- III. Effects of External Cl? Replacement.- IV. The Effect of Some Foreign Cations on PCl.- V. The Influence of External pH on PCl.- VI. Cl? Exchange.- VII. Some Comments on the Mechanisms of Anion Permeation in Muscle.- E. List of Symbols.- Acknowledgements.- References.- 7 — Transport Across Mitochondrial Membranes.- A. Introduction.- B. Mitochondrial Structure, Function and Transport.- I. Mitochondrial Structure.- 1. Number, Size and Distribution.- 2. Structure.- 3. Isolation of Mitochondria.- II. Mitochondrial Function.- 1. The Respiratory Chain.- 2. Oxidative Phosphorylation Coupling Mechanisms.- a) The Chemical Coupling.- b) The Conformational Coupling.- c) The Chemiosmotic (or Electrochemical) Coupling.- III. Mitochondrial Permeability and Transport.- 1. Water Permeability.- 2. The Osmotic Space.- 3. Passive Permeability.- 4. Active Transport.- C. H+ Transport.- I. H+ Permeability and Transport.- 1. H+ Permeability of the Inner Membrane.- 2. Uncouplers and H+ Carriers.- 3. Energy-Dependent H+ Transport.- 4. Mechanisms of H+ Transport.- II. Determination of the Electrochemical Proton Gradient.- 1. Determination of ? pH.- a) Titrimetric Measurements.- b) pH Indicators and Spectrophotometric Techniques.- c) Distribution of Permeant Acids and Amines.- 2. The Determination of Transmembrane Potential.- a) Microelectrode Measurements.- b) Extrinsic Probes.- c) Intrinsic Probes.- d) Distribution of Anions.- e) Distribution of Cations.- D. Monovalent Cation Transport.- I. Monovalent Cation Permeability and Transport.- 1. Monovalent Cation Content of Mitochondria.- 2. K+ and Na+ Permeability.- 3. Energy-Dependent K+ Transport.- 4. Monovalent Cation/H+ Exchange.- II. Ionophores.- E. Transport of Ca++ and Other Divalent Cations.- I. The Reaction of Mitochondria with Ca++.- 1. Energy-Independent Ca++ Binding.- 2. Energy-Dependent Ca++ Transport.- II. Energy-Linked Ca++ Transport.- 1. Energy Requirements.- 2. Inhibitors.- 3. Kinetic Parameters.- 4. Events Associated with Ca++ Transport.- 5. Ca++ Permeability and Ca++ Carrier.- 6. Coupling with Energy.- 7. Ca++ Ionophores.- III. Localization, Distribution, and Physiological Significance of Mitochondrial Ca++ Transport.- 1. Localization.- 2. Distribution.- 3. Endogenous Ca++ Content and Ca++ Release from Mitochondria.- 4. Mitochondrial Ca++ Transport in Vivo and Physiological Significance.- IV. Transport of Other Divalent Cations.- 1. Mg++ Content, Permeability and Transport.- 2. Transport of Other Divalent Cations.- F. Transport of Anion and Metabolites.- I. Intra-Extramitochondrial Anion Compartmentation.- II. Methods for Studying Anion Transport in Mitochondria.- III. Anion Permeability.- 1. General Features.- 2. Chloride Permeability.- 3. Bicarbonate and Carbon Dioxide Permeability.- IV. Regulation of Anion and Metabolite Transport.- 1. Coupling of Metabolite Transport to Electron Transport.- 2. Regulation of Anion Transport by ? pH.- 3. Anion Exchange.- 4. Electroneutrality of Anion Exchange.- 5. In Vivo Regulation of Anion Uptake.- V. Anion Carriers and Kinetics of Transport.- 1. Types of Anion Carriers.- 2. Glutamate and Aspartate Transport.- 3. Phosphate Transport.- 4. Pyruvate Transport.- 5. Dicarboxylate and Tricarboxylate Exchange.- 6. Fatty Acid Transport.- 7. Inhibitors of the Transport.- 8. Species and Organ Variability of the Anion Transport.- G. Transport of Adenine Nucleotides.- I. Properties of Adenic Nucleotide Transport.- 1. Stoichiometric Exchange.- 2. Specificity.- 3. Affinity and Velocity.- 4. pH and Temperature Dependence.- 5. Localization and Genetic Determinations.- 6. Inhibitors.- II. Carrier Properties.- 1. Binding of Adenine Nucleotide to the Carrier.- 2. Binding of Inhibitors to the Carrier.- 3. Operation of the Carrier.- 4. Attempts at Carrier Isolation.- III. Energetics of the Transport.- 1. Vectorial Exchange.- 2. Electrogenic and Electroneutral Exchange.- a) Transmembrane Potential and Electrophoretic Exchange.- b) ? pH and Electroneutral (H+-Compensated) Exchange.- 3. Active Transport of ADP and ATP.- 4. Energetics of the Transport.- References.- 8 — Transport Across Sarcoplasmic Reticulum in Skeletal and Cardiac Muscle.- A. Introduction.- B. Methods of Preparation.- C. Composition of the SR Membrane.- I. Protein Components.- II. Lipid Components.- D. Structural Organization of the SR Membrane.- I. Electron-Microscopic Observations.- II. Localization of ATPase Proteins.- III. Packing of Phospholipids.- IV. Electron-Density Profiles.- V. A Developing Structural Model.- E. Ca2+ Binding and Ca2+ Transport.- I. Ca2+ Binding in the Absence of ATP.- II. ATP-DependentCa2+ Uptake.- III. Characterization of the Ca2+ Pump.- IV. Transient-State Phenomena.- V. Free Energy Requirements.- F. Mechanisms of ATP Hydrolysis.- G. Ca2+ Release.- I. Permeability of the SR Membrane to Ca2+.- II. Reversal of the Pump.- III. Ionophore-Induced Release.- IV. Calcium Triggered Release.- V. Charge Effects.- H. Experiments on Reconstitution.- J. Activity of Cardiac Microsomes.- K. Conclusions.- Acknowledgements.- References.- 9 — Transport Across the Lysosomal Membrane.- A. Introduction.- B. The Internal pH of the Lysosome.- I. Studies by Means of Vital Dyes.- II. Direct Measurements of Intralysosomal pH.- C. Mechanisms of Accumulation of Protons in Lysosomes.- D. An ATP-Dependent Proton Pump.- E. The Accumulation of Cationic Dyes and Drugs by Lysosomes.- F. The Permeability of Lysosomal Membranes to Solutes.- I. Lysosomal Vacuolization.- II. Lysosomal Latency.- III. Differential Permeability of Substrates and Products.- References.- 10 — Transport Across Chloroplast Envelopes — The Role of Phosphate.- A. Introduction.- B. The Experimental Basis of Transport Theory.- C. Induction, Autocatalysis, and Orthophosphate.- D. The Phosphate Translocator.- E. Orthophosphate and Pyrophosphate.- F. Control of Photosynthesis by Phosphate Transport.- I. Transport of Phosphate and the Rate of Photosynthesis.- II. The Effect of External Orthophosphate Concentration on Starch Synthesis.- G. Manipulation of Cytoplasmic Orthophosphate.- I. Sequestration of Orthophosphate by Mannose and Other Non-Metabolized Sugars: The Effect on Starch Synthesis.- II. Photosynthesis in the Presence of Mannose.- III. The Effect of Increased Levels of Orthophosphate.- H. Orthophosphate and Whole-Plant Physiology.- I. Assimilation Rate in Phosphate-Deficient Plants.- II. Increased Starch Synthesis in Phosphate-Deficient Plants.- III. Manipulation of Sink Activity in Whole Plants.- J. Conclusions.- Acknowledgements.- References.
1997-2024 DolnySlask.com Agencja Internetowa