• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Topological Vector Spaces: Chapters 1-5 » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Topological Vector Spaces: Chapters 1-5

ISBN-13: 9783540423386 / Angielski / Miękka / 2002 / 362 str.

N. Bourbaki; Nicolas Bourbaki; H. G. Eggleston
Topological Vector Spaces: Chapters 1-5 Bourbaki, N. 9783540423386 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Topological Vector Spaces: Chapters 1-5

ISBN-13: 9783540423386 / Angielski / Miękka / 2002 / 362 str.

N. Bourbaki; Nicolas Bourbaki; H. G. Eggleston
cena 484,18 zł
(netto: 461,12 VAT:  5%)

Najniższa cena z 30 dni: 462,63 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

This is a softcover reprint of the 1987 English translation of the second edition of Bourbaki's Espaces Vectoriels Topologiques. Much of the material has been rearranged, rewritten, or replaced by a more up-to-date exposition, and a good deal of new material has been incorporated in this book, reflecting decades of progress in the field.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Geometria
Mathematics > Prawdopodobieństwo i statystyka
Mathematics > Transformations
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9783540423386
Rok wydania:
2002
Numer serii:
000221096
Ilość stron:
362
Waga:
0.57 kg
Wymiary:
23.62 x 15.75 x 2.16
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Bibliografia

I. — Topological vector spaces over a valued division ring I..- § 1. Topological vector spaces.- 1. Definition of a topological vector space.- 2. Normed spaces on a valued division ring.- 3. Vector subspaces and quotient spaces of a topological vector space; products of topological vector spaces; topological direct sums of subspaces.- 4. Uniform structure and completion of a topological vector space.- 5. Neighbourhoods of the origin in a topological vector space over a valued division ring.- 6. Criteria of continuity and equicontinuity.- 7. Initial topologies of vector spaces.- § 2. Linear varieties in a topological vector space.- 1. Theclosure of a linear variety.- 2. Lines and closed hyperplanes.- 3. Vector subspaces of finite dimension.- 4. Locally compact topological vector spaces.- § 3. Metrisable topological vector spaces.- 1. Neighbourhoods of 0 in a metrisable topological vector space.- 2. Properties of metrisable vector spaces.- 3. Continuous linear functions in a metrisable vector space.- Exercises of § 1.- Exercises of § 2.- Exercises of § 3.- II. — Convex sets and locally convex spaces II..- § 1. Semi-norms.- 1. Definition of semi-norms.- 2. Topologies defined by semi-norms.- 3. Semi-norms in quotient spaces and in product spaces.- 4. Equicontinuity criteria of multilinear mappings for topologies defined by semi-norms.- § 2. Convex sets.- 1. Definition of a convex set.- 2. Intersections of convex sets. Products of convex sets.- 3. Convex envelope of a set.- 4. Convex cones.- 5. Ordered vector spaces.- 6. Convex cones in topological vector spaces.- 7. Topologies on ordered vector spaces.- 8. Convex functions.- 9. Operations on convex functions.- 10. Convex functions over an open convex set.- 11. Semi-norms and convex sets.- § 3. The Hahn-Banach Theorem (analytic form).- 1. Extension of positive linear forms.- 2. The Hahn-Banach theorem (analytic form).- § 4. Locally convex spaces.- 1. Definition of a locally convex space.- 2. Examples of locally convex spaces.- 3. Locally convex initial topologies.- 4. Locally convex final topologies.- 5. The direct topological sum of a family of locally convex spaces.- 6. Inductive limits of sequences of locally convex spaces.- 7. Remarks on Fréchet spaces.- § 5. Separation of convex sets.- 1. The Hahn-Banach theorem (geometric form).- 2. Separation of convex sets in a topological vector space.- 3. Separation of convex sets in a locally convex space.- 4. Approximation to convex functions.- § 6. Weak topologies.- 1. Dual vector spaces.- 2. Weak topologies.- 3. Polar sets and orthogonal subspaces.- 4. Transposition of a continuous linear mapping.- 5. Quotient spaces and subspaces of a weak space.- 6. Products of weak topologies.- 7. Weakly complete spaces.- 8. Complete convex cones in weak spaces.- § 7. Extremal points and extremal generators.- 1. Extremal points of compact convex sets.- 2. Extremal generators of convex cones.- 3. Convex cones with compact sole.- § 8. Complex locally convex spaces.- 1. Topological vector spaces over C.- 2. Complex locally convex spaces.- 3. The Hahn-Banach theorem and its applications.- 4. Weak topologies on complex vector spaces.- Exercises on § 2.- Exercises on § 3.- Exercises on § 4.- Exercises on § 5.- Exercises on § 6.- Exercises on § 7.- Exercises on § 8.- III. — Spaces of continuous linear mappings III..- § 1. Bornology in a topological vector space.- 1. Bornologies.- 2. Bounded subsets of a topological vector space.- 3. Image under a continuous mapping.- 4. Bounded subsets in certain inductive limits.- 5. The spaces EA (A bounded).- 6. Complete bounded sets and quasi-complete spaces.- 7. Examples.- § 2. Bornological spaces.- § 3. Spaces of continuous linear mappings.- 1. Thespaces ?? (E; F).- 2. Condition for ?? (E; F) to be Hausdorff.- 3. Relations between ? (E; F) and ? (Ê; F).- 4. Equicontinuous subsets of 2112 (E; F).- 5. Equicontinuous subsets of E’.- 6. The completion of a locally convex space.- 7. S-bornologies on ? (E; F).- 8. Complete subsets of ?? (E; F).- § 4. The Banach-Steinhaus theorem.- 1. Barrels and barrelled spaces.- 2. The Banach-Steinhaus theorem.- 3. Bounded subsets of ? (E; F) (quasi-complete case).- § 5. Hypocontinuous bilinear mappings.- 1. Separately continuous bilinear mappings.- 2. Separately continuous bilinear mappings on a product of Fréchet spaces.- 3. Hypocontinuous bilinear mappings.- 4. Extension of a hypocontinuous bilinear mapping.- 5. Hypocontinuity of the mapping (u, v) ? v o u.- § 6. Borel’s graph theorem.- 1. Borel’s graph theorem.- 2. Locally convex Lusin spaces.- 3. Measurable linear mappings on a Banach space.- Exercises on § 1.- Exercises on § 2.- Exercises on § 3.- Exercises on § 4.- Exercises on § 5.- Exercises on § 6.- IV. — Duality in topological vector spaces IV..- § 1. Duality.- 1. Topologies compatible with a duality.- 2. Mackey topology and weakened topology on a locally convex space.- 3. Transpose of a continuous linear mapping.- 4. Dual of a quotient space and of a subspace.- 5. Dual of a direct sum and of a product.- § 2. Bidual. Reflexive spaces.- 1. Bidual.- 2. Semi-reflexive spaces.- 3. Reflexive spaces.- 4. The case of normed spaces.- 5. Montel spaces.- § 3. Dual of a Fréchet space.- 1. Semi-barrelled spaces.- 2. Dual of a locally convex metrizable space.- 3. Bidual of a locally convex metrizable space.- 4. Dual of a reflexive Fréchet space.- 5. The topology of compact convergence on the dual of a Fréchet Space.- 6. Separately continuous bilinear mappings.- § 4. Strict morphisms of Fréchet spaces.- 1. Characterizations of strict morphisms.- 2. Strict morphisms of Fréchet spaces.- 3. Criteria for surjectivity.- § 5. Compactness criteria.- 1. General remarks.- 2. Simple compactness of sets of continuous functions.- 3. The Eberlein and Smulian theorems.- 4. The case of spaces of bounded continuous functions.- 5. Convex envelope of a weakly compact set.- Appendix. — Fixed points of groups of affine transformations.- 1. The case of solvable groups.- 2. Invariant means.- 3. Ryll-Nardzewski theorem.- 4. Applications.- Exercises on § 1.- Exercises on § 2.- Exercises on § 3.- Exercises on § 4.- Exercises on § 5.- Exercises on Appendix.- Table I. — Principal types of locally convex spaces.- Table II. — Principal homologies on the dual of a locally convex space.- V. — Hilbertian spaces (elementary theory) V..- § 1. Prehilbertian spaces and hilbertian spaces.- 1. Hermitian forms.- 2. Positive hermitian forms.- 3. Prehilbertian spaces.- 4. Hilbertian spaces.- 5. Convex subsets of a prehilbertian space.- 6. Vector subspaces and orthoprojectors.- 7. Dual of a hilbertian space.- § 2. Orthogonal families in a hilbertian space.- 1. External hilbertian sum of hilbertian spaces.- 2. Hilbertian sum of orthogonal subspaces of a hilbertian space.- 3. Orthonormal families.- 4. Orthonormalisation.- § 3. Tensor product of hilbertian spaces.- 1. Tensor product of prehilbertian spaces.- 2. Hilbertian tensor product of hilbertian spaces.- 3. Symmetric hilbertian powers.- 4. Exterior hilbertian powers.- 5. Exterior Multiplication.- § 4. Some classes of operators in hilbertian spaces.- 1. Adjoint.- 2. Partially isometric linear mappings.- 3. Normal endomorphisms.- 4. Hermitian endomorphisms.- 5. Positive endomorphisms.- 6. Trace of an endomorphism.- 7. Hilbert-Schmidt mappings.- 8. Diagonalization of Hilbert-Schmidt mappings.- 9. Trace of a quadratic form with respect to another.- Exercises on § 1.- Exercises on § 2.- Exercises on § 3.- Exercises on § 4.- Historical notes.- Index of notation.- Index of terminology.- Summary of some important properties of Banach spaces.

This is a softcover reprint of the English translation of 1987 of the second edition of Bourbaki's Espaces Vectoriels Topologiques (1981).
This Äsecond editionÜ is a brand new book and completely supersedes the original version of nearly 30 years ago. But a lot of the material has been rearranged, rewritten, or replaced by a more up-to-date exposition, and a good deal of new material has been incorporated in this book, all reflecting the progress made in the field during the last three decades.
Table of Contents.
Chapter I: Topological vector spaces over a valued field.
Chapter II: Convex sets and locally convex spaces.
Chapter III: Spaces of continuous linear mappings.
Chapter IV: Duality in topological vector spaces.
Chapter V: Hilbert spaces (elementary theory).
Finally, there are the usual "historical note", bibliography, index of notation, index of terminology, and a list of some important properties of Banach spaces.
(Based on Math Reviews, 1983)



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia