• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Topics in Mathematical Biology » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Topics in Mathematical Biology

ISBN-13: 9783319656205 / Angielski / Miękka / 2018 / 353 str.

Karl-Peter Hadeler; Michael Mackey; Angela Stevens
Topics in Mathematical Biology Karl-Peter Hadeler Michael Mackey Angela Stevens 9783319656205 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Topics in Mathematical Biology

ISBN-13: 9783319656205 / Angielski / Miękka / 2018 / 353 str.

Karl-Peter Hadeler; Michael Mackey; Angela Stevens
cena 524,53 zł
(netto: 499,55 VAT:  5%)

Najniższa cena z 30 dni: 501,19 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

This book analyzes the impact of quiescent phases on biological models. Quiescence arises, for example, when moving individuals stop moving, hunting predators take a rest, infected individuals are isolated, or cells enter the quiescent compartment of the cell cycle. In the first chapter of Topics in Mathematical Biology general principles about coupled and quiescent systems are derived, including results on shrinking periodic orbits and stabilization of oscillations via quiescence. In subsequent chapters classical biological models are presented in detail and challenged by the introduction of quiescence. These models include delay equations, demographic models, age structured models, Lotka-Volterra systems, replicator systems, genetic models, game theory, Nash equilibria, evolutionary stable strategies, ecological models, epidemiological models, random walks and reaction-diffusion models. In each case we find new and interesting results such as stability of fixed points and/or periodic orbits, excitability of steady states, epidemic outbreaks, survival of the fittest, and speeds of invading fronts. The textbook is intended for graduate students and researchers in mathematical biology who have a solid background in linear algebra, differential equations and dynamical systems. Readers can find gems of unexpected beauty within these pages, and those who knew K.P. (as he was often called) well will likely feel his presence and hear him speaking to them as they read.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Matematyka stosowana
Science > General
Wydawca:
Springer
Seria wydawnicza:
Lecture Notes on Mathematical Modelling in the Life Sciences
Język:
Angielski
ISBN-13:
9783319656205
Rok wydania:
2018
Wydanie:
2017
Numer serii:
000451472
Ilość stron:
353
Waga:
0.51 kg
Wymiary:
23.39 x 15.6 x 1.93
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

"This advanced textbook is well-suited for graduate students and researchers in mathematical biology with a solid background in mathematics, particularly linear algebra, differential equations and dynamical systems, and the material is put on a rigorous mathematical basis." (W. Huyer, Monatshefte für Mathematik, Vol. 192 (4), August, 2020)

Preface.- 1.Coupling and quiescence.- 2.Delay and age.- 3.Lotka-Volterra and replicator systems.- 4.Ecology.- 5.Homogeneous systems.- 6.Epidemic models.- 7.Coupled movements.- 8.Traveling fronts.- Index.

K.P. Hadeler (1936 - 2017) started studying mathematics and biology at the University of Hamburg in 1956. The interdisciplinary field of mathematical biology had not yet been invented and he was a pioneer in bringing those two subjects together and helping shape an emergent discipline. Hadeler held professorships at the Universities of Erlangen and Niemegen in the 60's, and in 1971 he obtained a Lehrstuhl für Biomathematik at the University of Tübingen. He published more than 200 research articles and was a co-founder of the flagship journal, the Journal of Mathematical Biology. His research has inspired generations of young researchers and Prof. Hadeler was active in research up until his death in early 2017. The textbook Topics in Mathematical Biology was his final passion, and it is unfortunate that he was unable to witness its publication. However, we feel it is a fitting legacy for a true innovator.

This book analyzes the impact of quiescent phases on biological models. Quiescence arises, for example, when moving individuals stop moving, hunting predators take a rest, infected individuals are isolated, or cells enter the quiescent compartment of the cell cycle. In the first chapter of Topics in Mathematical Biology general principles about coupled and quiescent systems are derived, including results on shrinking periodic orbits and stabilization of oscillations via quiescence. In subsequent chapters classical biological models are presented in detail and challenged by the introduction of quiescence. These models include delay equations, demographic models, age structured models, Lotka-Volterra systems, replicator systems, genetic models, game theory, Nash equilibria, evolutionary stable strategies, ecological models, epidemiological models, random walks and reaction-diffusion models. In each case we find new and interesting results such as stability of fixed points and/or periodic orbits, excitability of steady states, epidemic outbreaks, survival of the fittest, and speeds of invading fronts. 

The textbook is intended for graduate students and researchers in mathematical biology who have a solid background in linear algebra, differential equations and dynamical systems. Readers can find gems of unexpected beauty within these pages, and those who knew K.P. (as he was often called) well will likely feel his presence and hear him speaking to them as they read.




Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia