• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Thomas Aquinas' Mathematical Realism » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2950560]
• Literatura piękna
 [1849509]

  więcej...
• Turystyka
 [71097]
• Informatyka
 [151150]
• Komiksy
 [35848]
• Encyklopedie
 [23178]
• Dziecięca
 [617388]
• Hobby
 [139064]
• AudioBooki
 [1657]
• Literatura faktu
 [228597]
• Muzyka CD
 [383]
• Słowniki
 [2855]
• Inne
 [445295]
• Kalendarze
 [1464]
• Podręczniki
 [167547]
• Poradniki
 [480102]
• Religia
 [510749]
• Czasopisma
 [516]
• Sport
 [61293]
• Sztuka
 [243352]
• CD, DVD, Video
 [3414]
• Technologie
 [219456]
• Zdrowie
 [101002]
• Książkowe Klimaty
 [124]
• Zabawki
 [2311]
• Puzzle, gry
 [3459]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8079]
Kategorie szczegółowe BISAC

Thomas Aquinas' Mathematical Realism

ISBN-13: 9783031331275 / Angielski

Jean W. Rioux
Thomas Aquinas' Mathematical Realism Jean W. Rioux   9783031331275 Palgrave Macmillan - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Thomas Aquinas' Mathematical Realism

ISBN-13: 9783031331275 / Angielski

Jean W. Rioux
cena 523,30
(netto: 498,38 VAT:  5%)

Najniższa cena z 30 dni: 501,19
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!
inne wydania

In this book, philosopher Jean W. Rioux extends accounts of the Aristotelian philosophy of mathematics to what Thomas Aquinas was able to import from Aristotle's notions of pure and applied mathematics, accompanied by his own original contributions to them. Rioux sets these accounts side-by-side modern and contemporary ones, comparing their strengths and weaknesses.

Kategorie:
Nauka, Filozofia
Kategorie BISAC:
Philosophy > History & Surveys - Medieval
Wydawca:
Palgrave Macmillan
Język:
Angielski
ISBN-13:
9783031331275

Introduction

Part One: Mathematical Realism in Plato and Aristotle
Chapter One: Plato on Mathematics and the Mathematicals
1. Platonism as a form of mathematical realism.
2. The justification for, and place of, the mathematicals in Plato’s metaphysics.
3. The attraction of platonism for some contemporary philosophies of mathematics.
Chapter Two: Aristotle on the Objects of Mathematics
5 Where do the mathematicals exist?
6 The idealization of the mathematicals.
7 What does Aristotle mean when he says they exist “materially”? (Μ.3)
8 Is Aristotle a realist or a non-realist?
Chapter Three: Aristotle on The Speculative and Middle Sciences
1. A brief, standard account of the distinction between the practical and speculative sciences
in Aristotle, along with
2. the necessary and sufficient conditions for episteme.
3. How pure mathematics would fulfill those conditions.
4. An account of the “middle”, or applied, sciences, and
5. the priority of the mathematical sciences to the applied.
Chapter Four: Aristotle on Abstraction and Intelligible Matter
5 The distinguishing feature of the mathematical sciences (formal abstraction), and
6 Aristotle’s careful middle position between platonic realism and nominalism.
7 Intelligible matter, and why it is needed.
8 What each implies about
a) the existence of mathematicals and
b) how we can know them (note that these are Aristotle’s primary areas of objection to
the platonic forms in general).
Part Two: Mathematical Realism in Aquinas
Chapter Five: The Objects of Mathematics, Mathematical Freedom, and the Art of
Mathematics
7. Where do mathematicals exist? [Commentary on the Sentences I 2 1 3]
8. The idealization of the mathematicals.
9. How free is mathematics?
10. Are there legitimate and non-legitimate mathematical objects?
11. What of systematic studies of the non-legitimate objects?
12. Fictionalism?
Chapter Six: To Be Virtually
4. Virtual existence in Aquinas.
5. Intuitionism and the Excluded Middle.
6. Remote and proximate objects (the properties of all numbers are virtually contained in the
unit). SCG I 69 4 & 9
Chapter Seven: Mathematics and the Liberal Arts
1. One of Aquinas’ key additions to the Aristotelian account.
2. How the mathematical arts differ among themselves and from the speculative and applied
sciences.
3. The mathematical arts and truth.
Chapter Eight: The Place of the Imagination in Mathematics
1. Another key addition to Aristotle.
2. Hints of this in Aristotle.
3. Is Aquinas speaking of the representative or the creative imagination here?
4. The implications of a reduction to the imagination as regards mathematical truth.
Part Three: Aristotle, Aquinas, and Modern Philosophies of Mathematics
Chapter Nine: Subsequent Developments in Number Theory
1. What of zero, negatives, fractions, rationals, and reals?
2. What of imaginary and transfinite numbers?
3. What of systematic studies of real structure (e.g., topology)?
Chapter Ten: Non-Euclidean Geometry
1. Are Euclidean and non-euclidean geometries sciences?
2. In the same sense of the word?
3. What of the successful application of non-euclidean geometries?
4. Representational and non-representational systems.
Chapter Eleven: Cantor, Finitism, and the 20th-Century Controversies
1. The finitism / infinitism issue.
2. Logicism, formalism, and intuitionism.
3. Where would Aristotle’s and Aquinas’ mathematical realism fall in this schema? SCG I 69
11
Chapter Twelve: Realism and Non-Realism in Mathematics
1. Different types of mathematical non-realism.
2. Contemporary mathematical realisms (Franklin, Maddy, Bernot).
3. Benacerraf’s dilemma and Aristotle and Aquinas’ solution.
Chapter Thirteen: This account as compared to other modern Aristotelian-Thomistic accounts
1. Aristotelians: Franklin, Lear.
2. Thomists: Maurer et al.
Conclusion
Chapter Fourteen: Foundations Restored?
What would taking the claims made by Aristotle and Aquinas seriously do to contemporary
mathematics?

Jean W. Rioux is Professor and Chair of the Philosophy Department at Benedictine College, Atchison, USA. 

In this book, philosopher Jean W. Rioux extends accounts of the Aristotelian philosophy of mathematics to what Thomas Aquinas was able to import from Aristotle’s notions of pure and applied mathematics, accompanied by his own original contributions to them. Rioux sets these accounts side-by-side modern and contemporary ones, comparing their strengths and weaknesses.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia