• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Theoretical Fluid Dynamics » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Theoretical Fluid Dynamics

ISBN-13: 9783030310219 / Angielski / Twarda / 2020 / 569 str.

Achim Feldmeier
Theoretical Fluid Dynamics Achim Feldmeier 9783030310219 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Theoretical Fluid Dynamics

ISBN-13: 9783030310219 / Angielski / Twarda / 2020 / 569 str.

Achim Feldmeier
cena 443,82 zł
(netto: 422,69 VAT:  5%)

Najniższa cena z 30 dni: 424,07 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
inne wydania
Kategorie:
Nauka, Fizyka
Kategorie BISAC:
Science > Mechanika klasyczna płynów
Science > Fizyka matematyczna
Mathematics > Matematyka stosowana
Wydawca:
Springer
Seria wydawnicza:
Theoretical and Mathematical Physics
Język:
Angielski
ISBN-13:
9783030310219
Rok wydania:
2020
Wydanie:
2019
Numer serii:
000335295
Ilość stron:
569
Waga:
0.99 kg
Wymiary:
23.39 x 15.6 x 3.17
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

1 Description of fluids 5
1.1 Euler and Lagrange picture . . . . . . . . . . . . . . . . . . . . 5
1.2 Lagrange derivative . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Divergence-free vector field . . . . . . . . . . . . . . . . . . . . 10
1.5 Fluid boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Phase space fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.7 Moving fluid line . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.8 Internal fluid stress . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.9 Fluid equations from kinetic theory . . . . . . . . . . . . . . . 29
1.10 Streamlines and Pathlines . . . . . . . . . . . . . . . . . . . . . 32
1.11 Vortex line, vortex tube and line vortex . . . . . . . . . . . . . 33
1.12 Vortex sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.13 Vector gradient in cylindrical coordinates . . . . . . . . . . . . 39
1.14 Vector gradient in orthogonal coordinates . . . . . . . . . . . . 41
1.15 Vorticity equation . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.16 Velocity from vorticity . . . . . . . . . . . . . . . . . . . . . . . . 47
1.17 Bernoulli equation . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.18 Euler-Lagrange equation for fluids . . . . . . . . . . . . . . . . 52
1.19 Water waves from Euler-Lagrange equations . . . . . . . . . . 58
1.20 Stretching in an isotropic random velocity field . . . . . . . . 63
1.21 Converse Poincaré lemma . . . . . . . . . . . . . . . . . . . . . 65

2 Flows in the complex plane 79
2.1 Laplace equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.2 Green’s theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.3 Dirichlet and Neumann boundary conditions . . . . . . . . . . 82
2.4 Mean value and maximum property . . . . . . . . . . . . . . . 83
2.5 Logarithmic potential . . . . . . . . . . . . . . . . . . . . . . . . 85
2.6 Dirichlet’s principle . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.7 Streamfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.8 Vorticity on a sphere . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.9 Complex speed and potential . . . . . . . . . . . . . . . . . . . 96
2.10 Analytic functions, conformal transformation . . . . . . . . . 98
2.11 Schwarz-Christoffel theorem . . . . . . . . . . . . . . . . . . . . 100
2.12 Mapping of semi-infinite and infinite strips . . . . . . . . . . . 106
2.13 Riemann surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3 Vortices, corner flow and flow past plates 117
3.1 Straight vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.2 Corner flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.3 Corner flow with viscosity . . . . . . . . . . . . . . . . . . . . . 122
3.4 Flow past a flat plate . . . . . . . . . . . . . . . . . . . . . . . . 129
3.5 Blasius and Kutta-Jukowski theorems . . . . . . . . . . . . . . 132
3.6 Plane flow past a cylinder . . . . . . . . . . . . . . . . . . . . . 135
3.7 Kármán vortex street . . . . . . . . . . . . . . . . . . . . . . . . 137
3.8 Corner eddy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
3.9 Angular momentum transport . . . . . . . . . . . . . . . . . . . 155

4 Jets, wakes and cavities 163
4.1 Free streamlines . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.2 Flow past a step . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.3 Complex potential and speed plane . . . . . . . . . . . . . . . . 169
4.4 Outflow from an orifice . . . . . . . . . . . . . . . . . . . . . . . 170
4.5 A simple wake model . . . . . . . . . . . . . . . . . . . . . . . . 175
4.6 Riabouchinsky cavity . . . . . . . . . . . . . . . . . . . . . . . . 181
4.7 Levi-Civita method . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.8 Kolscher’s cusped cavity . . . . . . . . . . . . . . . . . . . . . . 188
4.9 Re-entrant jet cavity . . . . . . . . . . . . . . . . . . . . . . . . . 197
4.10 Tilted wedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
4.11 Weinstein theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5 Kelvin-Helmholtz instability 211
5.1 Kelvin-Helmholtz circulation theorem . . . . . . . . . . . . . . 211
5.2 Bjerknes circulation theorem . . . . . . . . . . . . . . . . . . . 217
5.3 Kelvin-Helmholtz instability . . . . . . . . . . . . . . . . . . . . 220
5.4 Vortex chain perturbation . . . . . . . . . . . . . . . . . . . . . 222
5.5 Vortex accumulation . . . . . . . . . . . . . . . . . . . . . . . . . 226
5.6 Linear stability analysis . . . . . . . . . . . . . . . . . . . . . . 230
5.7 Birkhoff-Rott equation for vortex sheets . . . . . . . . . . . . . 235
5.8 Curvature singularity in evolving vortex sheet . . . . . . . . . 239
5.9 Subsequent work on Moore’s singularity . . . . . . . . . . . . 254
5.10 Nonlinear stages of K-H instability . . . . . . . . . . . . . . . . 257
5.11 Why do large eddies occur in fast flows? . . . . . . . . . . . . . 259
5.12 Atmospheric instability . . . . . . . . . . . . . . . . . . . . . . . 262
5.13 Rayleigh inflexion theorem . . . . . . . . . . . . . . . . . . . . . 264
5.14 Kinematics of vortex rings . . . . . . . . . . . . . . . . . . . . . 266
5.15 Curvature and torsion . . . . . . . . . . . . . . . . . . . . . . . . 269
5.16 Helical line vortices . . . . . . . . . . . . . . . . . . . . . . . . . 271
5.17 Knotted and linked vortex rings . . . . . . . . . . . . . . . . . . 274
5.18 Clebsch coordinates and knottedness . . . . . . . . . . . . . . . 278

6 Kinematics of waves 279
6.1 Wave basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
6.2 Group speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
6.3 Kinematic waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
6.4 The wavefront . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
6.5 Waves and instability from a radiative force . . . . . . . . . . 289

7 Shallow water waves 299
7.1 Continuity equation . . . . . . . . . . . . . . . . . . . . . . . . . 300
7.2 Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
7.3 Wave equation for linear water waves . . . . . . . . . . . . . . 304
7.4 Tides in canals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
7.5 Cotidal lines and amphidromic points . . . . . . . . . . . . . . 312
7.6 Waves of finite amplitude . . . . . . . . . . . . . . . . . . . . . . 317
7.7 Nonlinear tides in an estuary . . . . . . . . . . . . . . . . . . . 321
7.8 Similarity solution: dam break . . . . . . . . . . . . . . . . . . 329
7.9 Non-breaking waves . . . . . . . . . . . . . . . . . . . . . . . . . 334
7.10 Bores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
7.11 Poincaré and Kelvin waves . . . . . . . . . . . . . . . . . . . . . 348
7.12 Wave behind a barrier . . . . . . . . . . . . . . . . . . . . . . . . 353

8 Free surface waves 373
8.1 Dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . . 374
8.2 Sudden impulse . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
8.3 Refraction and breaking at a coast . . . . . . . . . . . . . . . . 383
8.4 Waves in a non-uniform stream . . . . . . . . . . . . . . . . . . 392
8.5 Stokes wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
8.6 Stokes singularity . . . . . . . . . . . . . . . . . . . . . . . . . . 409
8.7 Crapper wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

9 Existence proof for weakly nonlinear water waves 427
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
9.2 Boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . 429
9.3 Linear integral equations . . . . . . . . . . . . . . . . . . . . . . 430
9.4 Schmidt’s nonlinear integral equation . . . . . . . . . . . . . . 441
9.5 General nonlinear integral equations . . . . . . . . . . . . . . 447
9.6 Integral equations for nonlinear waves . . . . . . . . . . . . . 449

10 Sound and internal gravity waves 463
10.1 Wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
10.2 Acoustic cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
10.3 Schwarzschild criterion . . . . . . . . . . . . . . . . . . . . . . . 470
10.4 Gravo-acoustic waves . . . . . . . . . . . . . . . . . . . . . . . . 473

11 Supersonic flow and shocks 479
11.1 Shock kinematics and entropy . . . . . . . . . . . . . . . . . . . 479
11.2 Jump conditions at shocks . . . . . . . . . . . . . . . . . . . . . 484
11.3 Shock speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
11.4 Shock entropy and supersonic inflow . . . . . . . . . . . . . . . 492
11.5 Laval nozzle and solar wind . . . . . . . . . . . . . . . . . . . . 493
11.6 Supersonic spots . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
11.7 Solar wind exhibiting a shock pair . . . . . . . . . . . . . . . . 509
11.8 Riemann sheets for the Burgers equation . . . . . . . . . . . . 514
11.9 Characteristics for first-order equations . . . . . . . . . . . . . 520
11.10Characteristics for second-order equations . . . . . . . . . . . 527
11.11Derivatives on characteristics . . . . . . . . . . . . . . . . . . . 529
11.12Simple waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

A Analytic and meromorphic functions 541

Achim Feldmeier is an astrophysicist and obtained his PhD in astronomy from Ludwig-Maximilians-Universität in München in 1994. He was postdoc at the University of Kentucky in Lexington and at Imperial College in London.

Since 2000 he works at the Universität Potsdam, where he is apl professor since 2006. He gave numerous courses in hydrodynamics and his research work is on flow properties of stellar winds.

This textbook gives an introduction to fluid dynamics based on flows for which analytical solutions exist, like individual vortices, vortex streets, vortex sheets, accretions disks, wakes, jets, cavities, shallow water waves, bores, tides, linear and non-linear free-surface waves, capillary waves, internal gravity waves and shocks.

Advanced mathematical techniques ("calculus") are introduced and applied to obtain these solutions, mostly from complex function theory (Schwarz-Christoffel theorem and Wiener-Hopf technique), exterior calculus, singularity theory, asymptotic analysis, the theory of linear and nonlinear integral equations and the theory of characteristics.

Many of the derivations, so far contained only in research journals, are made available here to a wider public.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia