• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Theorem Proving with the Real Numbers » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2939893]
• Literatura piękna
 [1808953]

  więcej...
• Turystyka
 [70366]
• Informatyka
 [150555]
• Komiksy
 [35137]
• Encyklopedie
 [23160]
• Dziecięca
 [608786]
• Hobby
 [136447]
• AudioBooki
 [1631]
• Literatura faktu
 [225099]
• Muzyka CD
 [360]
• Słowniki
 [2914]
• Inne
 [442115]
• Kalendarze
 [1068]
• Podręczniki
 [166599]
• Poradniki
 [468390]
• Religia
 [506548]
• Czasopisma
 [506]
• Sport
 [61109]
• Sztuka
 [241608]
• CD, DVD, Video
 [3308]
• Technologie
 [218981]
• Zdrowie
 [98614]
• Książkowe Klimaty
 [124]
• Zabawki
 [2174]
• Puzzle, gry
 [3275]
• Literatura w języku ukraińskim
 [260]
• Art. papiernicze i szkolne
 [7376]
Kategorie szczegółowe BISAC

Theorem Proving with the Real Numbers

ISBN-13: 9781447115939 / Angielski / Miękka / 2011 / 186 str.

John Harrison
Theorem Proving with the Real Numbers John Harrison 9781447115939 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Theorem Proving with the Real Numbers

ISBN-13: 9781447115939 / Angielski / Miękka / 2011 / 186 str.

John Harrison
cena 401,58
(netto: 382,46 VAT:  5%)

Najniższa cena z 30 dni: 385,52
Termin realizacji zamówienia:
ok. 22 dni roboczych.

Darmowa dostawa!

This book discusses the use of the real numbers in theorem proving. Typ ically, theorem provers only support a few 'discrete' datatypes such as the natural numbers. However the availability of the real numbers opens up many interesting and important application areas, such as the verification of float ing point hardware and hybrid systems. It also allows the formalization of many more branches of classical mathematics, which is particularly relevant for attempts to inject more rigour into computer algebra systems. Our work is conducted in a version of the HOL theorem prover. We de scribe the rigorous definitional construction of the real numbers, using a new version of Cantor's method, and the formalization of a significant portion of real analysis. We also describe an advanced derived decision procedure for the 'Tarski subset' of real algebra as well as some more modest but practically useful tools for automating explicit calculations and routine linear arithmetic reasoning. Finally, we consider in more detail two interesting application areas. We discuss the desirability of combining the rigour of theorem provers with the power and convenience of computer algebra systems, and explain a method we have used in practice to achieve this. We then move on to the verification of floating point hardware. After a careful discussion of possible correctness specifications, we report on two case studies, one involving a transcendental function."

Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Artificial Intelligence - General
Mathematics > Logic
Computers > Programming - Algorithms
Wydawca:
Springer
Seria wydawnicza:
Distinguished Dissertations
Język:
Angielski
ISBN-13:
9781447115939
Rok wydania:
2011
Wydanie:
Softcover Repri
Numer serii:
000070484
Ilość stron:
186
Waga:
0.31 kg
Wymiary:
23.5 x 15.5
Oprawa:
Miękka
Wolumenów:
01

1. Introduction.- 1.1 Symbolic computation.- 1.2 Verification.- 1.3 Higher order logic.- 1.4 Theorem proving vs. model checking.- 1.5 Automated vs. interactive theorem proving.- 1.6 The real numbers.- 1.7 Concluding remarks.- 2 Constructing the Real Numbers.- 2.1 Properties of the real numbers.- 2.2 Uniqueness of the real numbers.- 2.3 Constructing the real numbers.- 2.4 Positional expansions.- 2.5 Cantor’s method.- 2.6 Dedekind’s method.- 2.7 What choice?.- 2.8 Lemmas about nearly-multiplicative functions.- 2.9 Details of the construction.- 2.9.1 Equality and ordering.- 2.9.2 Injecting the naturals.- 2.9.3 Addition.- 2.9.4 Multiplication.- 2.9.5 Completeness.- 2.9.6 Multiplicative inverse.- 2.10 Adding negative numbers.- 2.11 Handling equivalence classes.- 2.11.1 Defining a quotient type.- 2.11.2 Lifting operations.- 2.11.3 Lifting theorems.- 2.12 Summary and related work.- 3. Formalized Analysis.- 3.1 The rigorization and formalization of analysis.- 3.2 Some general theories.- 3.2.1 Metric spaces and topologies.- 3.2.2 Convergence nets.- 3.3 Sequences and series.- 3.3.1 Sequences.- 3.3.2 Series.- 3.4 Limits, continuity and differentiation.- 3.4.1 Proof by bisection.- 3.4.2 Some elementary analysis.- 3.4.3 The Caratheodory derivative.- 3.5 Power series and the transcendental functions.- 3.6 Integration.- 3.6.1 The Newton integral.- 3.6.2 The Riemann integral.- 3.6.3 The Lebesgue integral.- 3.6.4 Other integrals.- 3.6.5 The Kurzweil-Henstock gauge integral.- 3.6.6 Formalization in HOL.- 3.7 Summary and related work.- 4. Explicit Calculations.- 4.1 The need for calculation.- 4.2 Calculation with natural numbers.- 4.3 Calculation with integers.- 4.4 Calculation with rationals.- 4.5 Calculation with reals.- 4.5.1 Integers.- 4.5.2 Negation.- 4.5.3 Absolute value.- 4.5.4 Addition.- 4.5.5 Subtraction.- 4.5.6 Multiplication by an integer.- 4.5.7 Division by an integer.- 4.5.8 Finite summations.- 4.5.9 Multiplicative inverse.- 4.5.10 Multiplication of real numbers.- 4.5.11 Thanscendental functions.- 4.5.12 Comparisons.- 4.6 Summary and related work.- 5. A Decision Procedure for Real Algebra.- 5.1 History and theory.- 5.2 Real closed fields.- 5.3 Abstract description of the algorithm.- 5.3.1 Preliminary simplification.- 5.3.2 Reduction in context.- 5.3.3 Degree reduction.- 5.3.4 The main part of the algorithm.- 5.3.5 Reduction of formulas without an equation.- 5.3.6 Reduction of formulas with an equation.- 5.3.7 Reduction of intermediate formulas.- 5.3.8 Proof of termination.- 5.3.9 Comparison with Kreisel and Krivine.- 5.4 The HOL Implementation.- 5.4.1 Polynomial arithmetic.- 5.4.2 Encoding of logical properties.- 5.4.3 HOL versions of reduction theorems.- 5.4.4 Overall arrangement.- 5.5 Optimizing the linear case.- 5.5.1 Presburger arithmetic.- 5.5.2 The universal linear case.- 5.6 Results.- 5.7 Summary and related work.- 6. Computer Algebra Systems.- 6.1 Theorem provers vs. computer algebra systems.- 6.2 Finding and checking.- 6.2.1 Relevance to our topic.- 6.2.2 Relationship to NP problems.- 6.2.3 What must be internalized?.- 6.3 Combining systems.- 6.3.1 Thust.- 6.3.2 Implementation issues.- 6.4 Applications.- 6.4.1 Polynomial operations.- 6.4.2 Differentiation.- 6.4.3 Integration.- 6.4.4 Other examples.- 6.5 Summary and related work.- 7. Floating Point Verification.- 7.1 Motivation.- 7.1.1 Comprehensible specifications.- 7.1.2 Mathematical infrastructure.- 7.2 Floating point error analysis.- 7.3 Specifying floating point operations.- 7.3.1 Round to nearest.- 7.3.2 Bounded relative error.- 7.3.3 Error commensurate with likely input error.- 7.4 Idealized integer and floating point operations.- 7.5 A square root algorithm.- 7.6 A CORDIC natural logarithm algorithm.- 7.7 Summary and related work.- 8. Conclusions.- 8.1 Mathematical contributions.- 8.2 The formalization of mathematics.- 8.3 The LCF approach to theorem proving.- 8.4 Computer algebra systems.- 8.5 Verification applications.- 8.6 Concluding remarks.- A. Logical foundations of HOL.- B. Recent developments.

John Harrison has had a lifelong interest in wildlife, and birds in particular. In 1973 he was appointed as a radio producer in the BBC Natural History Unit; during the 18 years he was there, he worked with most of the top naturalists and ornithologists in Britain. As a birdwatcher and wildlife enthusiast, he has made many visits to Sri Lanka over a number of years, and has a first-hand knowledge of the Sri Lankan avifauna. He is now the voluntary warden of a 70 ha wetland nature reserve for the Avon Wildlife Trust.

Harrison, John John Harrison has a lifelong interest in wildlife,... więcej >


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia