• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

The Weighted Bootstrap » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

The Weighted Bootstrap

ISBN-13: 9780387944784 / Angielski / Miękka / 1995 / 230 str.

Philippe Barbe; Patrice Bertail
The Weighted Bootstrap Philippe Barbe Patrice Bertail 9780387944784 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

The Weighted Bootstrap

ISBN-13: 9780387944784 / Angielski / Miękka / 1995 / 230 str.

Philippe Barbe; Patrice Bertail
cena 403,47 zł
(netto: 384,26 VAT:  5%)

Najniższa cena z 30 dni: 385,52 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

INTRODUCTION 1) Introduction In 1979, Efron introduced the bootstrap method as a kind of universal tool to obtain approximation of the distribution of statistics. The now well known underlying idea is the following: consider a sample X of Xl ' n independent and identically distributed H.i.d.) random variables (r. v, 's) with unknown probability measure (p.m.) P . Assume we are interested in approximating the distribution of a statistical functional T(P ) the -1 nn empirical counterpart of the functional T(P), where P n: = n l: i=l aX. is 1 the empirical p.m. Since in some sense P is close to P when n is large, n LLd. from P and builds the empirical p.m. if one samples Xl ' ..., Xm n n -1 mn P T(P ) conditionally on: = mn l: i =1 a ' then the behaviour of P m n, m n n n X. 1 T(P ) should imitate that of when n and mn get large. n This idea has lead to considerable investigations to see when it is correct, and when it is not. When it is not, one looks if there is any way to adapt it."

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Prawdopodobieństwo i statystyka
Wydawca:
Springer
Seria wydawnicza:
Ima Volumes in Mathematics and Its Applications
Język:
Angielski
ISBN-13:
9780387944784
Rok wydania:
1995
Wydanie:
Softcover Repri
Numer serii:
000034421
Ilość stron:
230
Waga:
0.45 kg
Wymiary:
23.5 x 15.5
Oprawa:
Miękka
Wolumenów:
01

Table.- I.1) Introduction.- I.2) Some connected works.- I) Asymptotic theory for the generalized bootstrap of statistical differentiate functionals.- I.1) Introduction.- I.2) Fréchet-differentiability and metric indexed by a class of functions.- I.2.1) Differentiability assumptions.- I.2.2) The choice of the metric.- I.2.3) Rate of convergence of the weighted empirical process indexed by a class of functions.- I.3) Consistency of the generalized bootstrapped distribution, variance estimation and Edgeworth expansion.- I.3.1) Consistency of the generalized bootstrapped distribution.- I.3.2) The generalized bootstrap variance estimator.- I.3.3) Edgeworth expansion of the studentized functional.- I.3.4) Inverting Edgeworth expansion to construct confidence intervals.- I.4) Applications.- I.4.1) The mean.- I.4.2) M-estimators.- I.4.3) The probability of being censored.- I.4.4) Multivariate V-statistics.- I.5) Some simulation results.- II) How to choose the weights.- II.1) Introduction.- II.2) Weights generated from an i.i.d. sequence : almost sure results.- II.3) Best weights for the bootstrap of the mean via Edgeworth expansion.- II.3.1) Second order correction.- II.3.2) Coverage probability.- II.4) Choice of the weights for general functional via Edgeworth expansion.- II.4.1) Edgeworth expansion up to o(n-1) for a third order differentiable functional.- II.4.2) Edgeworth Expansion up to o(n-1) for the weighted version.- II.5) Coverage probability for the weighted bootstrap of general functional.- II.5.1) Derivation of the coverage probability.- II.5.2) Choosing the weights via minimization of the coverage probability.- II.5.3) Simulation results.- II.6) Conditional large deviations.- II.7) Conclusion.- III) Some special forms of the weighted bootstrap.- III.1) Introduction.- III.2) Bootstrapping an empirical d.f. when parameters are estimated or under some local alternatives.- III.3) Bootstrap of the extremes and bootstrap of the mean in the infinite variance case.- III.4) Conclusion.- IV) Proofs of results of Chapter I.- IV.1) Proof of Proposition I.2.1.- IV.2) Proof of Proposition I.2.2.- IV.3) Proof of Theorem I.3.1.- IV.4) Some notations and auxilliary lemmas.- IV.5) Proof of Theorem I.3.2.- IV.6) More lemmas to prove Theorem I.3.2.- IV.7) Proof of Theorem I.3.3.- IV.8) Proof of Theorem I.3.4.- IV.9) Proof of Theorem I.3.5.- V) Proofs of results of Chapter II.- V.1) Proofs of results of section II. 2.- V.2) Proof of Formula (II.3.2).- V.3) Proof of Proposition II.4.1.- V.4) Proof of (II.5.6).- V.5) Proof of (II.5.9).- V.6) Proof of (II.5.10).- V.7) Proof of (II.5.11).- V.8) Proof of Theorem II.6.2.- VI) Proofs of results of Chapter III.- VI.1) Proof of Theorem III.1.1.- VI.2) Proof of Theorem III.1.2.- VI.3) Proof of Theorem III.2.1.- VI.4) Proof of Theorem III.2.2.- Appendix 1 : Exchangeable variables of sum 1.- Appendix 5 : Finite sample asymptotic for the mean and the bootstrap mean estimator.- Appendix 6 : Weights giving an almost surely consistent bootstrapped mean.- References.- Notation index.- Author index.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia