Preface xiThérèse ENCRENAZ and James LEQUEUXChapter 1. Satellites and Rings of the Giant Planets 1Athena COUSTENIS, Marcello FULCHIGNONI and Françoise ROQUES1.1. Introduction 11.2. Jupiter's satellites 51.2.1. The Galilean satellites 51.2.2. The minor Jovian satellites 171.3. Saturn's satellites 171.3.1. Titan 191.3.2. Enceladus 301.3.3. The other icy satellites 331.3.4. Challenges for future missions in the Saturn system and Dragonfly 391.4. The satellites of Uranus and Neptune 401.4.1. The satellites of Uranus 401.4.2. The satellites of Neptune 421.4.3. Future exploration of the icy giant planets' systems 431.5. The rings 431.5.1. Tidal forces and the Roche limit 461.5.2. Flattening and ring dispersion 471.5.3. Jupiter's rings 471.5.4. Saturn's rings 481.5.5. Uranus's rings 511.5.6. Neptune's rings 511.5.7. The rings of small bodies 531.5.8. Ring dynamics 561.5.9. The origin of the rings 591.5.10. An exo-ring 611.6. References 62Chapter 2. Comets, Asteroids, and Dwarf Planets 65Jacques CROVISIER and Marcello FULCHIGNONI2.1. Comets 652.1.1. Definition and nomenclature 662.1.2. The orbits and families of the comets 712.1.3. Cometary magnitude 742.1.4. Space exploration of the comets 762.1.5. The nucleus 822.1.6. The atmosphere 842.1.7. Dust and the tail 1022.1.8. The chemical diversity of the comets: a relationship to their origins? 1092.1.9. The interaction of comets with solar wind 1102.2. The "historical" asteroids 1122.2.1. The asteroids in the main belt 1142.2.2. The asteroids that cross the orbit of the terrestrial planets 1172.2.3. The Trojan asteroids 1192.2.4. The properties of asteroids 1202.3. The "new" asteroids 1292.3.1. The Centaurs 1302.3.2. Trans-Neptunian objects 1312.3.3. Interstellar objects 1362.3.4. The origin and evolution of the asteroids 1372.4. The dwarf planets 1392.4.1. Ceres 1402.4.2. Pluto and its satellites 1442.4.3. Eris, Haumea, and Makemake 1492.5. References 152Chapter 3. Meteorites and Cosmochemistry 157Brigitte ZANDA3.1. Rocks falling from the sky 1573.2. Origin of meteorites 1623.3. Planetary differentiation and groups of meteorites 1653.4. Chondrites and the origin of the Solar System 1693.4.1. The chemical composition of chondrites 1703.4.2. The mineralogy of chondrites 1733.4.3. The isotopic characteristics of bulk meteorites 1803.5. Differentiated meteorites 1843.5.1. Fragments of the asteroid Vesta 1843.5.2. Iron meteorites 1873.5.3. Pallasites 1903.5.4. Fragments of the planet Mars 1913.6. Witnesses to the formation and evolution of the Solar System 1953.7. References 197Chapter 4. Formation and Dynamic History of the Solar System 205Françoise ROQUES4.1. Introduction 2054.2. Laws of motion of the planets and satellites 2074.2.1. Kepler's laws 2074.2.2. Gravity 2094.2.3. Newton's fundamental laws of dynamics 2094.2.4. The orbital elements 2114.3. The two-body problem 2124.4. The three-body problem 2134.4.1. Jacobi constant and Lagrange points 2144.4.2. Tadpole and horseshoe orbits 2154.4.3. Hill sphere 2164.5. Perturbations and resonances 2174.6. Stability and chaos in the Solar System 2184.7. Orbits in relation to a flattened body 2204.8. Tidal effect 2234.8.1. Tidal deformation 2244.8.2. Tidal torque 2254.8.3. Roche limit 2264.9. Nongravitational forces and orbits of small bodies 2274.9.1. Radiation pressure (micrometer-sized grains) 2274.9.2. Poynting-Robertson effect (small macroscopic particles) 2294.9.3. The Yarkovsky Effect (meter to kilometer-sized particles) 2304.9.4. Yorp torque (asymmetric bodies) 2304.9.5. Friction from solar particles (submicrometer dust) 2304.9.6. Friction in gas 2304.10. Formation of planetary systems 2314.10.1. A disk of planetoids 2334.10.2. Formation of terrestrial planets 2334.10.3. Formation of Jupiter 2354.10.4. Formation of giant planets by core accretion 2374.10.5. Formation by disk instability 2394.10.6. Disappearance of the gas 2404.10.7. Catastrophic collisions 2434.10.8. Small bodies 2454.10.9. Planetary migration 2464.10.10. Fate of the small bodies 2494.10.11. Exoplanetary formation 2524.11. References 255Chapter 5. Origin of Life and Extraterrestrial Life 257James LEQUEUX5.1. Definition of life 2575.2. The appearance of life on Earth 2585.2.1. Physicochemical conditions 2585.2.2. The first forms of life 2605.2.3. The formation of living cells 2655.3. Life elsewhere in the Solar System 2685.3.1. Mars 2695.3.2. Venus 2705.3.3. Satellites of the giant planets 2715.4. How can life be detected on exoplanets? 2745.5. Communicating with other civilizations? 2755.6. References 275Chapter 6. Methods for Studying the Solar System 277Thérèse ENCRENAZ, Marcello FULCHIGNONI, Laurent LAMY, Françoise ROQUES and James LEQUEUX6.1. History 2776.2. Observational techniques 2806.2.1. Remote sensing 2806.2.2. Methods of space exploration 2916.2.3. Virtual Observatory and databases 3036.2.4. Perspectives of ground-based and space observations 3066.3. Computer simulations 3146.3.1. Dynamics 3146.3.2. Global climate models 3196.4. References 324Appendix. Web links 327Glossary 329List of Authors 341Index 343
Therese Encrenaz is an Astronomer Emeritus at CNRS and the Paris Observatory, France, specializing in planetary atmospheres. She has directed the Observatory's Space Research Department.James Lequeux is an honorary astronomer at the Paris Observatory, France. He has directed the Nançay Radio Observatory and the Marseille Observatory; he was also editor-in-chief of the Astronomy & Astrophysics journal.