'Drori's textbook makes the learning curve for deep learning a whole lot easier to climb. It follows a rigid scientific narrative, accompanied by a trove of code examples and visualizations. These enable a truly multi-modal approach to learning that will allow many students to understand the material better and sets them on a path of exploration.' Joaquin Vanschoren, Assistant Professor of Machine Learning, Eindhoven University of Technology
Preface; Notation; Part I. Foundations: 1. Introduction; 2. Forward and backpropagation; 3. Optimization; 4. Regularization; Part II. Architectures: 5. Convolutional neural networks; 6. Sequence models; 7. Graph neural networks; 8. Transformers; Part III. Generative Models: 9. Generative adversarial networks; 10. Variational autoencoders; Part IV. Reinforcement Learning: 11. Reinforcement learning; 12. Deep reinforcement learning; Part V. Applications: 13. Applications; Appendices; References; Index.