• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

The Methods of Distances in the Theory of Probability and Statistics » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

The Methods of Distances in the Theory of Probability and Statistics

ISBN-13: 9781489995698 / Angielski / Miękka / 2015 / 619 str.

Stoyan V Stoyanov;Lev Klebanov;Svetlozar T Rachev
The Methods of Distances in the Theory of Probability and Statistics Stoyan V Stoyanov Lev Klebanov Svetlozar T Rachev 9781489995698 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

The Methods of Distances in the Theory of Probability and Statistics

ISBN-13: 9781489995698 / Angielski / Miękka / 2015 / 619 str.

Stoyan V Stoyanov;Lev Klebanov;Svetlozar T Rachev
cena 684,33
(netto: 651,74 VAT:  5%)

Najniższa cena z 30 dni: 655,41
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
inne wydania

This book covers the method of metric distances and its application in probability theory and other fields. The method is fundamental in the study of limit theorems and generally in assessing the quality of approximations to a given probabilistic model. The method of metric distances is developed to study stability problems and reduces to the selection of an ideal or the most appropriate metric for the problem under consideration and a comparison of probability metrics. After describing the basic structure of probability metrics and providing an analysis of the topologies in the space of probability measures generated by different types of probability metrics, the authors study stability problems by providing a characterization of the ideal metrics for a given problem and investigating the main relationships between different types of probability metrics. The presentation is provided in a general form, although specific cases are considered as they arise in the process of finding supplementary bounds or in applications to important special cases. Svetlozar T. Rachev is the Frey Family Foundation Chair of Quantitative Finance, Department of Applied Mathematics and Statistics, SUNY-Stony Brook and Chief Scientist of Finanlytica, USA. Lev B. Klebanov is a Professor in the Department of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic. Stoyan V. Stoyanov is a Professor at EDHEC Business School and Head of Research, EDHEC-Risk Institute--Asia (Singapore). Frank J. Fabozzi is a Professor at EDHEC Business School. (USA)

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Prawdopodobieństwo i statystyka
Mathematics > Mathematical Analysis
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9781489995698
Rok wydania:
2015
Wydanie:
2013
Ilość stron:
619
Waga:
0.87 kg
Wymiary:
23.39 x 15.6 x 3.25
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Wydanie ilustrowane

From the book reviews:

"This textbook gives a comprehensive overview of the method of metric distances and its applications in probability theory. ... The text is mainly self-contained and should be accessible for readers with basic knowledge in probability theory. The exposition is well structured and covers an impressive range of topics around the central theme of probability metrics." (Hilmar Mai, zbMATH, Vol. 1280, 2014)

"The reviewed book is divided into five parts. ... The target audience is graduate students in the areas of functional analysis, geometry, mathematical programming, probability, statistics, stochastic analytics, and measure theory. The book can also be used for students in probability and statistics. The theory of probability metrics presented here can be applied to engineering, physics, chemistry, information theory, economics, and finance. Specialists from the aforementioned areas might find the book useful." (Adriana Horníková, Technometrics, Vol. 55 (4), November, 2013)

Main directions in the theory of probability metrics.- Probability distances and probability metrics: Definitions.- Primary, simple and compound probability distances, and minimal and maximal distances and norms.- A structural classification of probability distances.-Monge-Kantorovich mass transference problem, minimal distances and minimal norms.- Quantitative relationships between minimal distances and minimal norms.- K-Minimal metrics.- Relations between minimal and maximal distances.- Moment problems related to the theory of probability metrics: Relations between compound and primary distances.- Moment distances.- Uniformity in weak and vague convergence.- Glivenko-Cantelli theorem and Bernstein-Kantorovich invariance principle.- Stability of queueing systems.-Optimal quality usage.- Ideal metrics with respect to summation scheme for i.i.d. random variables.- Ideal metrics and rate of convergence in the CLT for random motions.- Applications of ideal metrics for sums of i.i.d. random variables to the problems of stability and approximation in risk theory.- How close are the individual and collective models in risk theory?- Ideal metric with respect to maxima scheme of i.i.d. random elements.- Ideal metrics and stability of characterizations of probability distributions.- Positive and negative de nite kernels and their properties.- Negative definite kernels and metrics: Recovering measures from potential.- Statistical estimates obtained by the minimal distances method.- Some statistical tests based on N-distances.- Distances defined by zonoids.- N-distance tests of uniformity on the hypersphere.-

Svetlozar T. Rachev is a Professorin Department of Applied Mathematics and Statistics, SUNY-Stony Brook. Lev B. Klebanov is a Professor in the Department of Probability and Mathematical Statistics, MFF, Charles University, Prague, Czech Republic. Stoyan V. Stoyanov is a Professor of Finance, EDHEC Business School, Head of Research, EDHEC-Risk Institute. Frank J. Fabozzi is a Professor of Finance, EDHEC Business School

This book covers the method of metric distances and its application in probability theory and other fields. The method is fundamental in the study of limit theorems and generally in assessing the quality of approximations to a given probabilistic model. The method of metric distances is developed to study stability problems and reduces to  the selection of an ideal or the most appropriate metric for the problem under consideration and a comparison of probability metrics.

After describing the basic structure of probability metrics and providing an analysis of the topologies in the space of probability measures generated by different types of probability metrics, the authors study stability problems by providing a characterization of the ideal metrics for a given problem and investigating the main relationships between different types of probability metrics. The presentation is provided in a general form, although specific cases are considered as they arise in the process of finding supplementary bounds or in applications to important special cases.

      Svetlozar T.  Rachev is the Frey Family Foundation Chair of Quantitative Finance, Department of Applied Mathematics and Statistics, SUNY-Stony Brook  and Chief Scientist of Finanlytica, USA. Lev B. Klebanov is a Professor in the Department of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic. Stoyan V. Stoyanov is a Professor at EDHEC Business School and Head of Research, EDHEC-Risk Institute—Asia (Singapore).  Frank J. Fabozzi is a Professor at EDHEC Business School. (USA)

 



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia