I. Computerized Tomography.- I.1 The basic example: transmission computerized tomography.- I.2 Other applications.- I.3 Bibliographical notes.- II. The Radon Transform and Related Transforms.- II.1 Definition and elementary properties of some integral operators.- II.2 Inversion formulas.- II.3 Uniqueness.- II.4 The ranges.- II.5 Sobolev space estimates.- II.6 The attenuated Radon transform.- II.7 Bibliographical notes.- III. Sampling and Resolution.- III.1 The sampling theorem.- III.2 Resolution.- III.3 Some two-dimensional sampling schemes.- III.4 Bibliographical notes.- IV. Ill-posedness and Accuracy.- IV.1 Ill-posed problems.- IV.2 Error estimates.- IV.3 The singular value decomposition of the Radon transform.- IV.4 Bibliographical notes.- V. Reconstruction Algorithms.- V.1 Filtered backprojection.- V.2 Fourier reconstruction.- V.3 Kaczmarz’s method.- V.4 Algebraic reconstruction technique (ART).- V.5 Direct algebraic methods.- V.6 Other reconstruction methods.- V.7 Bibliographical notes.- VI. Incomplete Data.- VI.1 General remarks.- VI.2 The limited angle problem.- VI.3 The exterior problem.- VI.4 The interior problem.- VI.5 The restricted source problem.- VI.6 Reconstruction of homogeneous objects.- VI.7 Bibliographical notes.- VII. Mathematical Tools.- VII.1 Fourier analysis.- VII.2 Integration over spheres.- VII.3 Special functions.- VII.4 Sobolev spaces.- VII.5 The discrete Fourier transform.- References.