• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

The Load-Pull Method of RF and Microwave Power Amplifier Design » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2944077]
• Literatura piękna
 [1814251]

  więcej...
• Turystyka
 [70679]
• Informatyka
 [151074]
• Komiksy
 [35590]
• Encyklopedie
 [23169]
• Dziecięca
 [611005]
• Hobby
 [136031]
• AudioBooki
 [1718]
• Literatura faktu
 [225599]
• Muzyka CD
 [379]
• Słowniki
 [2916]
• Inne
 [443741]
• Kalendarze
 [1187]
• Podręczniki
 [166463]
• Poradniki
 [469211]
• Religia
 [506887]
• Czasopisma
 [481]
• Sport
 [61343]
• Sztuka
 [242115]
• CD, DVD, Video
 [3348]
• Technologie
 [219293]
• Zdrowie
 [98602]
• Książkowe Klimaty
 [124]
• Zabawki
 [2385]
• Puzzle, gry
 [3504]
• Literatura w języku ukraińskim
 [260]
• Art. papiernicze i szkolne
 [7151]
Kategorie szczegółowe BISAC

The Load-Pull Method of RF and Microwave Power Amplifier Design

ISBN-13: 9781118898178 / Angielski / Twarda / 2020 / 192 str.

John Sevic
The Load-Pull Method of RF and Microwave Power Amplifier Design Sevic, John F. 9781118898178 Wiley - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

The Load-Pull Method of RF and Microwave Power Amplifier Design

ISBN-13: 9781118898178 / Angielski / Twarda / 2020 / 192 str.

John Sevic
cena 561,69
(netto: 534,94 VAT:  5%)

Najniższa cena z 30 dni: 554,83
Termin realizacji zamówienia:
ok. 30 dni roboczych.

Darmowa dostawa!

The book is intended for readers with an
existing base of knowledge regarding the wireless power amplifier (PA), a key
semiconductor component used in all wireless communication products. The PA
influences battery-life, talk-time, cost, and size of wireless communication
devices. The author presents a complete
pedagogical design methodology for wireless PA design, from specification
stage, to transistor selection, to final circuit design. An electrical
engineer, having read the book, will be able to start with key specifications
and end with a functioning wireless PA design to meet those specifications. This book fills an unmet need in the
technical literature by describing a general, powerful, accessible method that
spans multiple technology disciplines, including base-station, hand-set,
sat-com, and military applications, all from a practical, hands-on perspective.

Kategorie:
Technologie
Kategorie BISAC:
Technology & Engineering > Microwaves
Technology & Engineering > Power Resources - Electrical
Technology & Engineering > Radio
Wydawca:
Wiley
Język:
Angielski
ISBN-13:
9781118898178
Rok wydania:
2020
Ilość stron:
192
Waga:
0.45 kg
Wymiary:
0.99 x 0.99 x 0.99
Oprawa:
Twarda
Wolumenów:
01

List of Figures xiList of Tables xxiAcronyms, Abbreviations, and Notation xxiiiPreface xxvForeword xxixBiography xxxi1 Historical Methods of RF Power Amplifier Design 11.1 The RF Power Amplifier 11.2 History of RF Power Amplifier Design Methods 31.2.1 Copper Tape and the X-Acto Knife 41.2.2 The Shunt Stub Tuner 41.2.3 The Cripps Method 51.3 The Load-Pull Method of RF Power Amplifier Design 51.3.1 History of the Load-Pull Method 61.3.2 RF Power Amplifier Design with the Load-Pull Method 81.4 Historical Limitations of the Load-Pull Method 91.4.1 Minimum Impedance Range 101.4.2 Independent Harmonic Tuning 111.4.3 Peak and RMS Power Capability 121.4.4 Operating and Modulation Bandwidth 121.4.5 Linearity Impairment 131.4.6 Rigorous Error Analysis 141.4.7 Acoustically Induced Vibrations 141.5 Closing Remarks 15References 152 Automated Impedance Synthesis 172.1 Methods of Automated Impedance Synthesis 182.1.1 Passive Electromechanical Impedance Synthesis 182.1.2 The Active-Loop Method of Impedance Synthesis 212.1.3 The Active-Injection Method of Impedance Synthesis 242.2 Understanding Electromechanical Tuner Performance 262.2.1 Impedance Synthesis Range 262.2.2 Operating Bandwidth 272.2.3 Modulation Bandwidth 292.2.4 Tuner Insertion Loss 312.2.5 Power Capability 322.2.6 Vector Repeatability 342.2.7 Impedance State Resolution and Uniformity 352.2.8 Factors Influencing Tuner Speed 362.2.9 The Slab-Line to Coaxial Transition 372.3 Advanced Considerations in Impedance Synthesis 372.3.1 Independent Harmonic Impedance Synthesis 372.3.2 Sub-1 Omega Impedance Synthesis 412.4 Closing Remarks 43References 433 Load-Pull System Architecture and Verification 453.1 Load-Pull System Architecture 463.1.1 Load-Pull System Block Diagram 463.1.2 Source and Load Blocks 483.1.3 Signal Synthesis and Analysis 523.1.4 Large-Signal Input Impedance Measurement 533.1.5 AM-AM, AM-PM, and IM Phase Measurement 533.1.6 Dynamic Range Optimization 543.2 The DC Power Source 543.2.1 Charge Storage, Memory, and Video Bandwidth 553.2.2 Load-Pull of True PAE 563.2.3 The Effect of DC Bias Network Loss 573.3 The DeltaGT Method of System Verification 573.4 Electromechanical Tuner Calibration 603.5 Closing Remarks 60References 614 Load-Pull Data Acquisition and Contour Generation 634.1 Constant Source Power Load-Pull 644.1.1 Load-Pull with a Single Set of Contours 654.1.2 Load-Pull with Two or More Sets of Contours 694.1.3 Load-Pull for Signal Quality Optimization 734.1.4 Large-Signal Input Impedance 764.2 Fixed-Parametric Load-Pull 774.2.1 Fixed Load Power 774.2.2 Fixed Gain Compression 794.2.3 Fixed Peak-Average Ratio 794.2.4 Fixed Signal Quality 804.2.5 Treating Multiple Contour Intersections 814.3 Harmonic Load-Pull 824.3.1 Second Harmonic Load-Pull 834.3.2 Third-Harmonic Load-Pull 854.3.3 Higher-Order Effects and Inter-harmonic Coupling 854.3.4 Baseband Load-Pull for Video Bandwidth Optimization 854.4 Swept Load-Pull 874.4.1 Swept Available Source Power 874.4.2 Swept Bias 884.4.3 Swept Frequency 884.5 Advanced Techniques of Data Acquisition 884.5.1 Simplified Geometric-Logical Search 894.5.2 Synthetic Geometric-Logical Search 894.5.3 Multidimensional Load-Pull and Data Slicing 914.5.4 Min-Max Peak Searching 934.6 Closing Remarks 94References 955 Optimum Impedance Identification 975.1 Physical Interpretation of the Optimum Impedance 975.2 The Optimum Impedance Trajectory 995.2.1 Optimality Condition 995.2.2 Uniqueness Condition 1005.2.3 Terminating Impedance 1005.3 Graphical Extraction of the Optimum Impedance 1015.3.1 Optimum Impedance State Extraction 1015.3.2 Optimum Impedance Trajectory Extraction 1025.3.3 Treatment of Orthogonal Contours 1045.4 Optimum Impedance Extraction from Load-Pull Contours 1055.4.1 Simultaneous Average Load Power and PAE 1065.4.2 Simultaneous Average Load Power, PAE, and Signal Quality 1075.4.3 Optimum Impedance Extraction Under Fixed-Parametric Load-Pull 1085.4.4 PAE and Signal Quality Extraction Under Constant Average Load Power 1095.4.5 Optimum Impedance Extraction with Bandwidth as a Constraint 1105.4.6 Extension to Source-Pull 1125.4.7 Extension to Harmonic and Base-Band Load-Pull 1125.5 Closing Remarks 1126 Matching Network Design with Load-Pull Data 1156.1 Specification of Matching Network Performance 1166.2 The Butterworth Impedance Matching Network 1166.2.1 The Butterworth L-Section Prototype 1176.2.2 Analytical Solution of the Butterworth Matching Network 1196.2.3 Graphical Solution of the Butterworth Matching Network 1206.3 Physical Implementation of the Butterworth Matching Network 1216.3.1 The Lumped-Parameter Butterworth Matching Network 1226.3.2 The Distributed-Parameter Butterworth Matching Network 1246.3.3 The Hybrid-Parameter Butterworth Matching Network 1266.4 Supplemental Matching Network Responses 1306.4.1 The Chebyshev Response 1316.4.2 The Hecken and Klopfenstein Responses 1316.4.3 The Bessel-Thompson Response 1356.5 Matching Network Loss 1356.5.1 Definition of Matching Network Loss 1356.5.2 The Effects of Matching Network Loss 1366.5.3 Minimizing Matching Network Loss 1376.6 Optimum Harmonic Termination Design 1386.6.1 Optimally Engineered Waveforms 1386.6.2 Physical Implementation of Optimum Harmonic Terminations 1406.6.3 Optimum Harmonic Terminations in Practice 1416.7 Closing Remarks 142References 143

DR. JOHN F. SEVIC has held design positions at Motorola, Qualcomm, Tropian, Cree, Maury Microwave, and Focus Microwave, and is currently at Maja Systems, where he is engaged in millimeter-wave antenna design. John is inventor of one of the most widely used methods of battery-life improvement for mobile phones, stochastic efficiency optimization, found in virtually all mobile phone platforms. He has served on the IEEE Microwave Theory and Techniques Editorial Review Board, IEEE IMS TPC, and IEEE ARFTG TPC. John is lead inventor of ten US patents, with several pending, and has a Ph.D., MS, and BS, all in electrical engineering.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia