• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

The Kepler Conjecture: The Hales-Ferguson Proof » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

The Kepler Conjecture: The Hales-Ferguson Proof

ISBN-13: 9781461411284 / Angielski / Miękka / 2011 / 456 str.

Thomas C. Hales; Samuel P. Ferguson
The Kepler Conjecture: The Hales-Ferguson Proof Lagarias, Jeffrey C. 9781461411284 Springer, Berlin - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

The Kepler Conjecture: The Hales-Ferguson Proof

ISBN-13: 9781461411284 / Angielski / Miękka / 2011 / 456 str.

Thomas C. Hales; Samuel P. Ferguson
cena 200,77
(netto: 191,21 VAT:  5%)

Najniższa cena z 30 dni: 192,74
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

The Kepler conjecture, one of geometry's oldest unsolved problems, was formulated in 1611 by Johannes Kepler and mentioned by Hilbert in his famous 1900 problem list. The Kepler conjecture states that the densest packing of three-dimensional Euclidean space by equal spheres is attained by the cannonball" packing. In a landmark result, this was proved by Thomas C. Hales and Samuel P. Ferguson, using an analytic argument completed with extensive use of computers.This book centers around six papers, presenting the detailed proof of the Kepler conjecture given by Hales and Ferguson, published in 2006 in a special issue of Discrete & Computational Geometry. Further supporting material is also presented: a follow-up paper of Hales et al (2010) revising the proof, and describing progress towards a formal proof of the Kepler conjecture. For historical reasons, this book also includes two early papers of Hales that indicate his original approach to the conjecture.The editor's two introductory chapters situate the conjecture in a broader historical and mathematical context. These chapters provide a valuable perspective and are a key feature of this work.Thomas C. Hales, Mellon Professor of Mathematics at the University of Pittsburgh, began his efforts to solve the Kepler conjecture before 1992. He is a pioneer in the use of computer proof techniques, and he continues work on a formal proof of the Kepler conjecture as the aim of the Flyspeck Project (F, P and K standing for Formal Proof of Kepler).Samuel P. Ferguson completed his doctorate in 1997 under the direction of Hales at the University of Michigan. In 1995, Ferguson began to work with Hales and made significant contributions to the proof of the Kepler conjecture. His doctoral work established one crucial case of the proof, which appeared as a singly authored paper in the detailed proof.Jeffrey C. Lagarias, Professor of Mathematics at the University of Michigan, Ann Arbor, was a co-guest editor, with Gabor Fejes-Toth, of the special issue of Discrete & Computational Geometry that originally published the proof."

The Kepler Conjecture was one of geometry s oldest unsolved problems. Formulated in 1611 by Johannes Kepler, the Conjecture states that the densest packing of a three-dimensional Euclidean space by equal spheres is attained by "cannonball" packing. The Conjecture was finally proven in 1998 with the use of computers by Thomas Hales, with help from Samuel P. Ferguson. This book is a landmark publication that bridges computer techniques with human effort in one of the earliest proofs by "exhaustion."§The book is an expanded version of six papers published in a special issue of the field's foremost journal, Discrete & Computational Geometry. It also includes the original papers, which detail the proof and give a historical overview of the Conjecture. There are three additional appendices by Hales that outline extensive revisions to the proof and describe his original approach to the problem. Two new introductory chapters by the editor situate the Conjecture in a broader historical and mathematical context and a generalization of the Conjecture to more than three dimensions.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Matematyka stosowana
Mathematics > Geometria - Analityczna
Mathematics > Topologia
Wydawca:
Springer, Berlin
Język:
Angielski
ISBN-13:
9781461411284
Rok wydania:
2011
Wydanie:
2011
Ilość stron:
456
Waga:
0.63 kg
Wymiary:
22.61 x 15.49 x 2.54
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Wydanie ilustrowane

Preface.- Part I, Introduction and Survey.- 1 The Kepler Conjecture and Its Proof, by J. C. Lagarias.- 2 Bounds for Local Density of Sphere Packings and the Kepler Conjecture, by J. C. Lagarias.- Part II, Proof of the Kepler Conjecture.- Guest Editor's Foreword.- 3 Historical Overview of the Kepler Conjecture, by T. C. Hales.- 4 A Formulation of the Kepler Conjecture, by T. C. Hales and S. P. Ferguson.- 5 Sphere Packings III. Extremal Cases, by T. C. Hales.- 6 Sphere Packings IV. Detailed Bounds, by T. C. Hales.- 7 Sphere Packings V. Pentahedral Prisms, by S. P. Ferguson.- 8 Sphere Packings VI. Tame Graphs and Linear Programs, by T. C. Hales.- Part III, A Revision to the Proof of the Kepler Conjecture.- 9 A Revision of the Proof of the Kepler Conjecture, by T. C. Hales, J. Harrison, S. McLaughlin, T. Nipkow, S. Obua, and R. Zumkeller.- Part IV, Initial Papers of the Hales Program.- 10 Sphere Packings I, by T. C. Hales.- 11 Sphere Packings II, by T. C. Hales.- Index of Symbols.- Index of Subjects.

Thomas C. Hales, Mellon Professor of Mathematics at the University of Pittsburgh, began his efforts to solve the Kepler Conjecture before 1992. He is a pioneer in the use of computer proof techniques, and he continues work on a formal proof of the Kepler Conjecture as the aim of the Flyspeck Project (F, P and K standing for Formal Proof of Kepler).

Samuel P. Ferguson completed his doctorate in 1997 under the direction of Hales at the University of Michigan. In 1995, Ferguson began to work with Hales and made significant contributions to the proof of the Kepler Conjecture. His doctoral work established one crucial case of the proof, which appeared as a singly authored paper in the detailed proof.

Jeffrey C. Lagarias, Professor of Mathematics at the University of Michigan, Ann Arbor, was a co-guest editor, with Gábor Fejes-Tóth, of the special issue of Discrete & Computational Geometry that originally published the proof.

The Kepler conjecture, one of geometry's oldest unsolved problems, was formulated in 1611 by Johannes Kepler and mentioned by Hilbert in his famous 1900 problem list. The Kepler conjecture states that the densest packing of three-dimensional Euclidean space by equal spheres is attained by the “cannonball" packing. In a landmark result, this was proved by Thomas C. Hales and Samuel P. Ferguson, using an analytic argument completed with extensive use of computers.

This book centers around six papers, presenting the detailed proof of the Kepler conjecture given by Hales and Ferguson, published in 2006 in a special issue of Discrete & Computational Geometry. Further supporting material is also presented: a follow-up paper of Hales et al (2010) revising the proof, and describing progress towards a formal proof of the Kepler conjecture. For historical reasons, this book also includes two early papers of Hales that indicate his original approach to the conjecture.

The editor's two introductory chapters situate the conjecture in a broader historical and mathematical context. These chapters provide a valuable perspective and are a key feature of this work.

Thomas C. Hales, Mellon Professor of Mathematics at the University of Pittsburgh, began his efforts to solve the Kepler conjecture before 1992. He is a pioneer in the use of computer proof techniques, and he continues work on a formal proof of the Kepler conjecture as the aim of the Flyspeck Project (F, P and K standing for Formal Proof of Kepler).

Samuel P. Ferguson completed his doctorate in 1997 under the direction of Hales at the University of Michigan. In 1995, Ferguson began to work with Hales and made significant contributions to the proof of the Kepler conjecture. His doctoral work established one crucial case of the proof, which appeared as a singly authored paper in the detailed proof.

Jeffrey C. Lagarias, Professor of Mathematics at the University of Michigan, Ann Arbor, was a co-guest editor, with Gábor Fejes-Tóth, of the special issue of Discrete & Computational Geometry that originally published the proof.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia