ISBN-13: 9780821813799 / Angielski / Twarda / 1999
After three introductory volumes on the classification of the finite simple groups, (Mathematical Surveys and Monographs, Volumes 40.1, 40.2, and 40.3), the authors now start the proof of the classification theorem. They begin the analysis of a minimal counter-example $G$ to the theorem. Two fundamental and powerful theorems in finite group theory are examined: the Bender-Suzuki theorem on strongly embedded subgroups (for which the non-character-theoretic part of the proof is provided) and Aschbacher's Component theorem. Included are new generalizations of Aschbacher's theorem which treat components of centralizers of involutions and $p$-components of centralizers of elements of order $p$ for arbitrary primes $p$.