• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Sustainable Environmental Engineering » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2950560]
• Literatura piękna
 [1849509]

  więcej...
• Turystyka
 [71097]
• Informatyka
 [151150]
• Komiksy
 [35848]
• Encyklopedie
 [23178]
• Dziecięca
 [617388]
• Hobby
 [139064]
• AudioBooki
 [1657]
• Literatura faktu
 [228597]
• Muzyka CD
 [383]
• Słowniki
 [2855]
• Inne
 [445295]
• Kalendarze
 [1464]
• Podręczniki
 [167547]
• Poradniki
 [480102]
• Religia
 [510749]
• Czasopisma
 [516]
• Sport
 [61293]
• Sztuka
 [243352]
• CD, DVD, Video
 [3414]
• Technologie
 [219456]
• Zdrowie
 [101002]
• Książkowe Klimaty
 [124]
• Zabawki
 [2311]
• Puzzle, gry
 [3459]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8079]
Kategorie szczegółowe BISAC

Sustainable Environmental Engineering

ISBN-13: 9781119028376 / Angielski / Twarda / 2018 / 528 str.

Tang, Walter Z.; Sillanpää, Mika
Sustainable Environmental Engineering Tang, Walter Z.; Sillanpää, Mika 9781119028376 John Wiley & Sons - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Sustainable Environmental Engineering

ISBN-13: 9781119028376 / Angielski / Twarda / 2018 / 528 str.

Tang, Walter Z.; Sillanpää, Mika
cena 633,82
(netto: 603,64 VAT:  5%)

Najniższa cena z 30 dni: 629,92
Termin realizacji zamówienia:
ok. 30 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

This book is focused on defining the ten design principles for Sustainable Environmental Engineering (SEE). It critically examines the past engineering design in environmental engineering according to ten principles. Eight new major design topics are demonstrated as new industrial trend to replace the conventional environmental engineering design or processes. Nanotechnology produced nano-materials including TiO2 nanotubes and modified silica aerogel are developing for photo-catalytic oxidation of organic pollutants to replace phase transfer technology such as adsorption.

The book starts with the common environmental issues such as air, water, and soil pollution under climate change. Other topics covered include sustainability, environmental laws, green engineering, decision principles and metrics, green chemistry, green engineering design, life cycle assessment, impact of water and wastewater treatment, total cost assessment, and sustainable engineering design for future. After green economy is defined, new challenges of SEE are explained. Design tools such as SPSS for statistical analysis, Crystal Ball for Monte Carlo simulation, Matlab codes for reactor design, and Simulink programs for simulation of reactor are demonstrated using design examples. In addition, experiential teaching, critical thinking, entrepreneurial skills, and community involvement are intervened with traditional learning modules such as homework and quiz as assignment.

Kategorie:
Technologie
Kategorie BISAC:
Technology & Engineering > Environmental - General
Wydawca:
John Wiley & Sons
Język:
Angielski
ISBN-13:
9781119028376
Rok wydania:
2018
Ilość stron:
528
Waga:
1.62 kg
Wymiary:
27.94 x 21.59 x 3.05
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia

Preface xv

1 Renewable Resources and Environmental Quality 1

1.1 Renewable Resources and Energy 1

1.2 Human Demand and Footprint 5

1.3 Challenges and Opportunities 9

1.4 Carrying Capacity 11

1.5 Air, Water, and Soil Quality Index 13

1.6 Air, Water, and Soil Pollution 19

1.7 Life Cycle Assessment 21

1.8 Environmental Laws 22

1.9 Exercise 24

2 Health Risk Assessment 29

2.1 Environmental Health 29

2.2 Environmental Standards 31

2.3 Health Risk Assessment 36

2.4 QSAR Analysis in HRA 46

2.5 Quantification of Uncertainty 54

2.6 Exercise 62

References 63

3 Twelve Design Principles of Sustainable Environmental Engineering 67

3.1 Sustainability 67

3.2 Challenges and Opportunities 69

 

3.3 Sustainable Environmental Engineering 74

3.4 SEE Design Principles 78

3.5 Principle 8: Separation 84

3.6 Implementation of the SEE Design Principles 88

3.7 Exercise 91

References 93

4 Integrated and Interconnected Systems 95

4.1 Principle 1 95

4.2 Challenges and Opportunities 98

4.3 Integrated Solid Waste Management 103

4.4 Integrated Air Quality Management (IAQM) 131

4.5 Exercise 132

References 134

5 Reliable Systems on a Spatial Scale 135

5.1 Principle 2 135

5.2 Integrated System Approach 137

5.3 Scale–up of Laboratory or Pilot Design to Full–scale Plant 141

5.4 Exercise 154

References 155

6 Resiliency on Temporal Scale 157

6.1 Principle 3 157

6.2 Challenges and Opportunities 159

6.3 Discharge Standards 159

6.4 Population Growth 160

6.5 Steady Versus Unsteady 162

6.6 Hydraulic Condition of Different Reactors 167

6.7 Chemical Kinetics 168

6.8 Group Theory Predicting Hydroxyl Radical Kinetic Constants 172

6.9 Photocatalytic Oxidation of Halogen–substituted Meta–phenols by UV/TiO2 172

6.10 Environmental Issues on Different Temporal Scales 178

6.11 Exercise 181

References 182

7 Efficiency of Renewable Materials 185

7.1 Principle 4 185

7.2 Stoichiometry 185

7.3 Avoid the Addition of Chemicals 187

7.4 Design Efficient Reactors 203

7.4.1 Cost of Different Volume Reactors 212

7.5 Exercise 213

References 214

8 Efficiency of Renewable Energy 215

8.1 Principle 5 215

8.2 Challenges and Opportunities 216

8.3 Energy Conservation Laws 218

8.4 Energy Balances 223

8.5 Benchmarks for Unit Energy Consumption in WTP and WWTP 225

8.6 Energy Consumption by Pump 232

8.7 Solar Energy 233

8.8 Exercise 235

References 236

9 Prevention 239

9.1 Principle 6 239

9.2 Challenges and Opportunities 240

9.3 Green Infrastructure 241

9.4 Design Tools of Rain Harvest 244

9.5 Design Anaerobic Digester Reactor 262

9.6 Green Roof Design 263

9.7 Rain Garden Design 268

9.8 Exercise 276

References 277

10 Recovery 279

10.1 Principle 7 279

10.2 Phosphorus Removal from Wastewater 280

10.3 Phosphorus Recovery 283

10.4 Capital and Operation Cost of Reclaiming Water for Reuse 286

10.5 Exercise 317

References 319

11 Separation 321

11.1 Principle 8 321

11.2 Challenges and Opportunities 323

11.3 Precipitation 324

11.4 Coagulation and Flocculation 325

11.5 Membrane Filtration Systems 333

11.6 Activated Carbon Adsorption 335

11.7 Anaerobic Membrane Biological Reactor 339

11.8 Air Stripping 341

11.9 LCA Tools for WWTPs 350

11.10 Capital and O&M Costs of Membrane Filtration 353

11.11 Exercise 361

References 362

12 Treatment 365

12.1 Principle 9 365

12.2 Challenges 365

12.3 Environmental Regulations 366

12.4 UV Disinfection 370

12.5 Virus Sensitivity Index of UV Disinfection 376

12.6 Bacteria Sensitivity Index (BSI) with Shoulder Effect 381

12.7 Emerging Treatment Technologies 386

12.8 Design Considerations of UV Disinfection System 389

12.9 Exercise 392

References 392

13 Green Retrofitting and Remediation 395

13.1 Principle 10 395

13.2 Challenges of WWTP Design 395

13.3 Anaerobic Digestion for Biogas Production 396

13.4 Best Practice Benchmark 399

13.5 Green Retrofitting 400

13.6 Sludge Processing and Disposal 406

13.7 Green Remediation 410

13.8 Tools 421

13.8.1 SiteWiseTM 421

13.9 Exercise 421

References 423

14 Optimization through Modeling and Simulation 425

14.1 Principle 425

14.2 Introduction 425

14.3 Challenges and Opportunities 428

14.4 Modeling of the Fenton Process 428

14.5 Simulation 436

14.6 Optimization 437

14.7 Validation and Uncertainty 447

14.8 Exercise 448

References 450

15 Life Cycle Cost and Benefit Analysis 453

15.1 Principle 453

15.2 Challenges and Opportunities 453

15.3 Optimum Pipe Size 454

15.4 Advanced Oxidation Process Costs 461

15.5 Recovery of N and P 465

15.6 Entrepreneur in SEE 492

15.7 Innovation in SEE 495

15.7.1 Innovative Technologies 495

15.8 Exercise 497

References 499

Index 501

Walter Z. Tang, PhD, is an Associate Professor of Environmental Engineering in the Department of Civil and Environmental Engineering at Florida International University, Miami, Florida, USA.

Mika Sillanpää, PhD, is a Professor in Green Chemistry at the Lappeenranta University of Technology in Finland. 

The important resource that explores the twelve design principles of sustainable environmental engineering

Sustainable Environmental Engineering (SEE) is to research, design, and build Environmental Engineering Infrastructure System (EEIS) in harmony with nature using life cycle cost analysis and benefit analysis and life cycle assessment and to protect human health and environments at minimal cost. The foundations of the SEE are the twelve design principles (TDPs) with three specific rules for each principle. The TDPs attempt to transform how environmental engineering could be taught by prioritizing six design hierarchies through six different dimensions. Six design hierarchies are prevention, recovery, separation, treatment, remediation, and optimization. Six dimensions are integrated system, material economy, reliability on spatial scale, resiliency on temporal scale, and cost effectiveness. In addition, the authors, two experts in the field, introduce major computer packages that are useful to solve real environmental engineering design problems. 

The text presents how specific environmental engineering issues could be identified and prioritized under climate change through quantification of air, water, and soil quality indexes. For water pollution control, eight innovative technologies which are critical in the paradigm shift from the conventional environmental engineering design to water resource recovery facility (WRRF) are examined in detail. These new processes include UV disinfection, membrane separation technologies, Anammox, membrane biological reactor, struvite precipitation, Fenton process, photocatalytic oxidation of organic pollutants, as well as green infrastructure. Computer tools are provided to facilitate life cycle cost and benefit analysis of WRRF. This important resource:

    Includes statistical analysis of engineering design parameters using Statistical Package for the Social Sciences (SPSS)

    Presents Monte Carlos simulation using Crystal ball to quantify uncertainty and sensitivity of design parameters

    Contains design methods of new energy, materials, processes, products, and system to achieve energy positive WRRF that are illustrated with Matlab

    Provides information on life cycle costs in terms of capital and operation for different processes using MatLab

Written for senior or graduates in environmental or chemical engineering, Sustainable Environmental Engineering defines and illustrates the TDPs of SEE. Undergraduate, graduate, and engineers should find the computer codes are useful in their EEIS design. The exercise at the end of each chapter encourages students to identify EEI engineering problems in their own city and find creative solutions by applying the TDPs. For more information, please visit www.tang.fiu.edu.  



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia