• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Support Vector Machines for Pattern Classification » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2950560]
• Literatura piękna
 [1849509]

  więcej...
• Turystyka
 [71097]
• Informatyka
 [151150]
• Komiksy
 [35848]
• Encyklopedie
 [23178]
• Dziecięca
 [617388]
• Hobby
 [139064]
• AudioBooki
 [1657]
• Literatura faktu
 [228597]
• Muzyka CD
 [383]
• Słowniki
 [2855]
• Inne
 [445295]
• Kalendarze
 [1464]
• Podręczniki
 [167547]
• Poradniki
 [480102]
• Religia
 [510749]
• Czasopisma
 [516]
• Sport
 [61293]
• Sztuka
 [243352]
• CD, DVD, Video
 [3414]
• Technologie
 [219456]
• Zdrowie
 [101002]
• Książkowe Klimaty
 [124]
• Zabawki
 [2311]
• Puzzle, gry
 [3459]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8079]
Kategorie szczegółowe BISAC

Support Vector Machines for Pattern Classification

ISBN-13: 9781447125488 / Angielski / Miękka / 2012 / 473 str.

Shigeo Abe
Support Vector Machines for Pattern Classification Shigeo Abe 9781447125488 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Support Vector Machines for Pattern Classification

ISBN-13: 9781447125488 / Angielski / Miękka / 2012 / 473 str.

Shigeo Abe
cena 603,81
(netto: 575,06 VAT:  5%)

Najniższa cena z 30 dni: 578,30
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.

Kategorie:
Informatyka
Kategorie BISAC:
Computers > Artificial Intelligence - Computer Vision & Pattern Recognition
Computers > Document Management
Technology & Engineering > Automation
Wydawca:
Springer
Seria wydawnicza:
Advances in Computer Vision and Pattern Recognition
Język:
Angielski
ISBN-13:
9781447125488
Rok wydania:
2012
Numer serii:
000418995
Ilość stron:
473
Waga:
0.75 kg
Wymiary:
23.5 x 15.5
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

From the reviews:

"This broad and deep ... book is organized around the highly significant concept of pattern recognition by support vector machines (SVMs). ... The book is praxis and application oriented but with strong theoretical backing and support. Many ... details are presented and discussed, thereby making the SVM both an easy-to-understand learning machine and a more likable data modeling (mining) tool. Shigeo Abe has produced the book that will become the standard ... . I like it and therefore highly recommend this book ... ." (Vojislav Kecman, SIAM Review, Vol. 48 (2), 2006)

Introduction Two-Class Support Vector Machines Multiclass Support Vector Machines Variants of Support Vector Machines Training Methods Kernel-Based Methods Feature Selection and Extraction Clustering Maximum-Margin Multilayer Neural Networks Maximum-Margin Fuzzy Classifiers Function Approximation.

Originally formulated for two-class classification problems, support vector machines (SVMs) are now accepted as powerful tools for developing pattern classification and function approximation systems. Recent developments in kernel-based methods include kernel classifiers and regressors and their variants, advancements in generalization theory, and various feature selection and extraction methods.

Providing a unique perspective on the state of the art in SVMs, with a particular focus on classification, this thoroughly updated new edition includes a more rigorous performance comparison of classifiers and regressors. In addition to presenting various useful architectures for multiclass classification and function approximation problems, the book now also investigates evaluation criteria for classifiers and regressors.

Topics and Features:

  • Clarifies the characteristics of two-class SVMs through extensive analysis
  • Discusses kernel methods for improving the generalization ability of conventional neural networks and fuzzy systems
  • Contains ample illustrations, examples and computer experiments to help readers understand the concepts and their usefulness
  • Includes performance evaluation using publicly available two-class data sets, microarray sets, multiclass data sets, and regression data sets (NEW)
  • Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation (NEW)
  • Covers sparse SVMs, an approach to learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning (NEW)
  • Explores incremental training based batch training and active-set training methods, together with decomposition techniques for linear programming SVMs (NEW)
  • Provides a discussion on variable selection for support vector regressors (NEW)

An essential guide on the use of SVMs in pattern classification, this comprehensive resource will be of interest to researchers and postgraduate students, as well as professional developers.

Dr. Shigeo Abe is a Professor at Kobe University, Graduate School of Engineering. He is the author of the Springer titles Neural Networks and Fuzzy Systems and Pattern Classification: Neuro-fuzzy Methods and Their Comparison.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia