ISBN-13: 9783838679631 / Niemiecki / Miękka / 2004 / 116 str.
Inhaltsangabe: Zusammenfassung: In dieser Arbeit stehen neben dem Begriff des Data Mining" besonders die statistischen Methoden im Mittelpunkt. Interessenten sollen den kreativen Prozess des Data Mining naher kennen lernen und erfahren, welche Rolle dabei der Statistik zukommt. Das Ziel der Arbeit ist, eine weiterreichende Darstellung des Prozesses des Data Mining mit statistischen Methoden zu erstellen, angefangen bei der Zielfindung, uber die Modellbildung, bis hin zur Bewertung der Ergebnisse. Dabei orientiert sich die Vorgehensweise der systematischen Auswertung an der Methode des CRoss Industry Standard Process for Data Mining, mit der sich Data Mining Prozesse beschreiben lassen. Zum besseren Verstandnis werden grundlegende Begriffe zum Data Mining sowie die bedeutsamsten Methoden und Verfahren zur statistischen Datenanalyse erlautert, welche bei den im Anschluss aufgezeigten Data Mining Problemen zur Anwendung kommen. Die veranschaulichten Analyseprobleme entsprechen den Aufgaben der Data Mining Cups der Jahre 2001 und 2002. Dabei werden die zur Losung angewendeten statistischen Methoden nachvollziehbar wiedergegeben und es wird auf die kritischen Erfolgsfaktoren eingegangen. Oftmals wirken sich schon einzelne Teilentscheidungen bei der Datenaufbereitung und bei den eingesetzten Klassifizierungsmethoden auf die Losung der Data Mining Aufgabe aus. Daher stellte sich die Frage, wie solche Abweichungen von den aufgezeigten Methoden aussehen konnten. In dieser Arbeit werden im Einzelnen verschiedene Abwandlungen durchgefuhrt, am Ende zusammengefasst und diskutiert. Inhaltsverzeichnis: Inhaltsverzeichnis: Abbildungsverzeichnis6 Tabellenverzeichnis7 1.Einleitung9 1.1Problemstellung10 1.2Ziel der Arbeit11 1.3Themenabgrenzung12 2.Der Data Mining Prozess im CRISP-DM Referenzmodell14 2.1Das CRISP-DM Referenzmodell14 2.2Die Phasen des CRISP-DM Referenzmodells15 2.2.1business understanding (Anwendungsverstehen)15 2.2.2data understanding (Datenverstehen