• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Statistics for High-Dimensional Data: Methods, Theory and Applications » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Statistics for High-Dimensional Data: Methods, Theory and Applications

ISBN-13: 9783642201912 / Angielski / Twarda / 2011 / 556 str.

Peter B. Hlmann; Sara Van de Geer
Statistics for High-Dimensional Data: Methods, Theory and Applications Bühlmann, Peter 9783642201912 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Statistics for High-Dimensional Data: Methods, Theory and Applications

ISBN-13: 9783642201912 / Angielski / Twarda / 2011 / 556 str.

Peter B. Hlmann; Sara Van de Geer
cena 605,23 zł
(netto: 576,41 VAT:  5%)

Najniższa cena z 30 dni: 539,74 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections.
A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods' great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Computers > Mathematical & Statistical Software
Mathematics > Prawdopodobieństwo i statystyka
Computers > Computer Science
Wydawca:
Springer
Seria wydawnicza:
Springer Series in Statistics
Język:
Angielski
ISBN-13:
9783642201912
Rok wydania:
2011
Numer serii:
000022130
Ilość stron:
556
Waga:
0.90 kg
Wymiary:
23.11 x 16.0 x 3.3
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Wydanie ilustrowane

From the reviews:

"This book is a complete study of 1-penalization based statistical methods for high-dimensional data ... . Definitely, this book is useful. ... its strong level in mathematics makes it more suitable to researchers and graduate students who already have a strong background in statistics. ... it gives the state-of-the-art of the theory, and therefore can be used for an advanced course on the topic. ... the last part of the book is an exciting introduction to new research perspectives provided by 1-penalized methods." (Pierre Alquier, Mathematical Reviews, Issue 2012 e)

"All Classical Statisticians interested in the very popular but a bit old methodologies like the Lasso (Tibshirani, 1996), its modifications like adaptive Lasso (Zou, 2006), and their theory, computational algorithms, applications to bioinformatics and other high dimensional applications. All such researchers would find this book worth buying. It is written by two outstanding theoreticians with flair for clear writing and excellent applications. ... theory depends a lot on new concentration inequalities coming from the French probabilists. The book has good collection of these, with proofs." (Jayanta K. Ghosh, International Statistical Review, Vol. 80 (3), 2012)

Introduction.- Lasso for linear models.- Generalized linear models and the Lasso.- The group Lasso.- Additive models and many smooth univariate functions.- Theory for the Lasso.- Variable selection with the Lasso.- Theory for l1/l2-penalty procedures.- Non-convex loss functions and l1-regularization.- Stable solutions.- P-values for linear models and beyond.- Boosting and greedy algorithms.- Graphical modeling.- Probability and moment inequalities.- Author Index.- Index.- References.- Problems at the end of each chapter.

Peter Bühlmann is Professor of Statistics at ETH Zürich. His main research areas are high-dimensional statistical inference, machine learning, graphical modeling, nonparametric methods, and statistical modeling in the life sciences. He is currently editor of the Annals of Statistics. He was awarded a Medallion lecture by the Institute of Mathematical Statistics in 2009 and read a paper to the Royal Statistical Society in 2010.

Sara van de Geer has been a full professor at the ETH in Zürich since 2005. Her main areas of research are empirical process theory, statistical learning theory, and nonparametric and high-dimensional statistics. She is an associate editor of Probability Theory and Related Fields, The Scandinavian Journal of Statistics and Statistical Surveys and a member of the Swiss National Science Foundation and correspondent of the Dutch Royal Academy of Sciences.
She received the IMS medal in 2003 and the ISI award in 2005, and was an invited speaker at the International Conference of Mathematicians in 2010.

Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections.
A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia