• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Statistical Inference for Discrete Time Stochastic Processes » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2952079]
• Literatura piękna
 [1850969]

  więcej...
• Turystyka
 [71058]
• Informatyka
 [151066]
• Komiksy
 [35579]
• Encyklopedie
 [23181]
• Dziecięca
 [620496]
• Hobby
 [139036]
• AudioBooki
 [1646]
• Literatura faktu
 [228729]
• Muzyka CD
 [379]
• Słowniki
 [2932]
• Inne
 [445708]
• Kalendarze
 [1409]
• Podręczniki
 [164793]
• Poradniki
 [480107]
• Religia
 [510956]
• Czasopisma
 [511]
• Sport
 [61267]
• Sztuka
 [243299]
• CD, DVD, Video
 [3411]
• Technologie
 [219640]
• Zdrowie
 [100984]
• Książkowe Klimaty
 [124]
• Zabawki
 [2281]
• Puzzle, gry
 [3363]
• Literatura w języku ukraińskim
 [258]
• Art. papiernicze i szkolne
 [8020]
Kategorie szczegółowe BISAC

Statistical Inference for Discrete Time Stochastic Processes

ISBN-13: 9788132207627 / Angielski / Miękka / 2012 / 113 str.

M. B. Rajarshi
Statistical Inference for Discrete Time Stochastic Processes M. B. Rajarshi 9788132207627 Springer, India, Private Ltd - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Statistical Inference for Discrete Time Stochastic Processes

ISBN-13: 9788132207627 / Angielski / Miękka / 2012 / 113 str.

M. B. Rajarshi
cena 160,83
(netto: 153,17 VAT:  5%)

Najniższa cena z 30 dni: 154,04
Termin realizacji zamówienia:
ok. 22 dni roboczych.

Darmowa dostawa!

This work is an overview of statistical inference in stationary, discrete time stochastic processes. Results in the last fifteen years, particularly on non-Gaussian sequences and semi-parametric and non-parametric analysis have been reviewed. The first chapter gives a background of results on martingales and strong mixing sequences, which enable us to generate various classes of CAN estimators in the case of dependent observations. Topics discussed include inference in Markov chains and extension of Markov chains such as Raftery's Mixture Transition Density model and Hidden Markov chains and extensions of ARMA models with a Binomial, Poisson, Geometric, Exponential, Gamma, Weibull, Lognormal, Inverse Gaussian and Cauchy as stationary distributions. It further discusses applications of semi-parametric methods of estimation such as conditional least squares and estimating functions in stochastic models. Construction of confidence intervals based on estimating functions is discussed in some detail. Kernel based estimation of joint density and conditional expectation are also discussed. Bootstrap and other resampling procedures for dependent sequences such as Markov chains, Markov sequences, linear auto-regressive moving average sequences, block based bootstrap for stationary sequences and other block based procedures are also discussed in some detail. This work can be useful for researchers interested in knowing developments in inference in discrete time stochastic processes. It can be used as a material for advanced level research students.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Prawdopodobieństwo i statystyka
Wydawca:
Springer, India, Private Ltd
Seria wydawnicza:
SpringerBriefs in Statistics
Język:
Angielski
ISBN-13:
9788132207627
Rok wydania:
2012
Dostępne języki:
Angielski
Wydanie:
2013
Ilość stron:
113
Waga:
2.06 kg
Wymiary:
23.523.5 x 15.5
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

CAN Estimators from dependent observations.- Markov chains and their extensions.- Non-Gaussian ARMA models.- Estimating Functions.- Estimation of joint densities and conditional expectation.- Bootstrap and other resampling procedures.- Index.

M. B. Rajarshi received his Ph.D. in 1978 from the University of Pune, India. His research interests include inference for stochastic processes, applied probability and stochastic modeling. He has published about 35 papers in these areas mostly in international journals. Dr Rajarshi retired in 2009 from the University of Pune as a Professor of Statistics. He has held visiting appointments at Pennsylvania State University (USA), University of Waterloo and Memorial University of Newfoundland (Canada). He was the Chief Editor of the Journal of the Indian Statistical Association (2000-2006). He was elected as a Member of the International Statistical Institute (1998) and at present is the President of the India Chapter of the International Indian Statistician Association.

This work is an overview of statistical inference in stationary, discrete time stochastic processes.  Results in the last fifteen years, particularly on non-Gaussian sequences and semi-parametric and non-parametric analysis have been reviewed.

The first chapter gives a background of results on martingales and strong mixing sequences, which enable us to generate various classes of CAN estimators in the case of dependent observations. Topics discussed include inference in Markov chains and extension of Markov chains such as Raftery's Mixture Transition Density model and Hidden Markov chains and extensions of ARMA models with a Binomial, Poisson, Geometric, Exponential, Gamma, Weibull, Lognormal, Inverse Gaussian and Cauchy as stationary distributions.

It further discusses applications of semi-parametric methods of estimation such as conditional least squares and estimating functions in stochastic models. Construction of confidence intervals based on estimating functions is discussed in some detail. Kernel based estimation of joint density and conditional expectation are also discussed.

Bootstrap and other resampling procedures for dependent sequences such as Markov chains, Markov sequences, linear auto-regressive moving average sequences, block based bootstrap for stationary sequences and other block based procedures are also discussed in some detail.

This work can be useful for researchers interested in knowing developments in inference in discrete time stochastic processes. It can be used as a material for advanced level research students.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia