ISBN-13: 9783030776916 / Angielski / Twarda / 2021 / 506 str.
ISBN-13: 9783030776916 / Angielski / Twarda / 2021 / 506 str.
1 Theoretical and Experimental Principles
1.1 General Characteristics of Isotopes
1.2 Isotope Effects
1.3 Isotope Fractionation Processes
1.3.1 Isotope Exchange
1.3.1.1 Fractionation Factor (α)
1.3.1.2 The Delta Value (δ)1.3.1.3 Evaporation-Condensation Processes
1.3.2 Kinetic Effects
1.3.3 Mass-Dependent and Mass-Independent Isotope Effects
1.3.3.1 Mass Dependent Effects
1.3.3.2 Mass Independent Effects
1.3.4 Nuclear Volume and Magnetic Isotope Effects
1.3.4.1 Nuclear Volume Effects
1.3.4.2 Magnetic Isotope Effects
1.3.5 Multiply Substituted Isotopologues
1.3.5.1 Position or Site-Specific Isotope Fractionations
1.3.6 Diffusion
1.3.7 Other Factors Influencing Isotopic Fractionations
1.3.8 Isotope Geothermometers
1.4 Basic Principles of Mass Spectrometry
1.4.1 Continuous Flow—Isotope Ratio Monitoring Mass1.4.3 Laser Microprobe
1.4.4 High-mass resolution multiple-collector IR mass spectrometry
1.4.5 Infrared spectroscopy
Cavity Ring-Down Spectroscopy
1.4.6 Nuclear Magnetic Resonance (NMR) Spectroscopy1.5 Standards
1.6 Microanalytical Techniques
1.6.1 Multicollector-ICP-Mass Spectrometry
1.6.2 Secondary Ion Mass Spectrometry (SIMS)1.7 References
2 Isotope Fractionation Processes of Selected Elements
Part I “Traditional” Isotopes
2.1 Hydrogen
2.1.1 Methods
2.1.2 Standards
2.1.3 Fractionation Processes
2.1.3.1 Water Fractionations
2.1.3.2 Equilibrium Reactions
2.1.3.3 Fractionations during Biosynthesis2.1.3.4 Other Fractionations
2.2 Carbon
2.2.1 Analytical Methods
2.2.1.1 Standards
2.2.2 Fractionation Processes
2.2.2.1 Carbonate System
2.2.2.2 Other Equilibrium Isotope Fractionations
2.2.2.3 Organic Carbon System
2.2.2.4 Interactions between Carbonate-Carbon
and Organic Carbon
2.3 Nitrogen
2.3.1 Analytical Methods
2.3.2 Biological Nitrogen Isotope Fractionations2.3.3 Trophic level indicator
2.3.4 Nitrogen Isotope Distribution in the Earth
2.3.5 Nitrogen in the Ocean
2.4 Oxygen
2.4.1 Analytical Methods
2.4.1.1 Water
2.4.1.2 Carbonates
2.4.1.3 Silicates2.4.1.4 Phosphates
2.4.1.5 Sulfates
2.4.1.6 Nitrates
2.4.2 Standards
2.4.3 Fractionation Processes
2.4.3.1 Fractionation of Water
2.4.3.2 CO2 – H2O System2.4.3.3 Mineral Fractionations
2.4.4 Triple Oxygen Isotope Compositions (new figure)
2.4.5 Fluid-Rock Interactions
2.5 Sulfur
2.5.1 Methods
2.5.2 Fractionation Mechanisms
2.5.2.1 Equilibrium Reactions
2.5.2.2 Dissimilatory Sulfate Reduction2.5.2.3 Thermochemical Reduction of Sulfate
2.5.3 Quadruple Sulfur Isotopes (new figure)
Part II “Non-traditional” Isotopes
Introductory remarks
2.6 Lithium
2.6.1 Methods
2.6.2 Diffusion
2.6.3 Magmatic Rocks
2.6.4 Weathering
2.6.5 Ocean Water
2.6.6 Meteoric Water
2.7 Boron
2.7.1 Methods
2.7.2 Isotope Fractionation Mechanism
2.7.3 Fractionations at High Temperatures
2.7.4 Weathering environment
2.7.5 Tourmaline
2.8-2.11 Alkaline earth elements
2.8 Magnesium
2.8.1 Calculated temperature fractionations
2.8.2 Fractionations during Weathering
2.8.3 Ocean Water
2.8.4 Carbonates
2.8.5 Plants and Animals
2.9 Calcium
2.9.1 Analytical Techniques
2.9.2 High Temperature Fractionations
2.9.3 Weathering
2.9.4 Fractionations during Carbonate Precipitation
2.9.5 Variations of ocean water with geologic time
2.9.6 Plants, Animals and Humans
2.10 Strontium
2.10.1 Silicates
2.10.2 Carbonates and Sulfates
2.10.3 Fluids and Plants
2.11 Barium
2.11.1 Magmatic systems
2.11.2 Ocean
2.12. Silicon
2.12.1 Equilibrium Isotope Fractionations
2.12.2 High-Temperature Fractionations
2.12.3 Chemical Weathering and Mineral Precipitation
2.12.4 Fractionations in Ocean Water
2.12.5 Cherts
2.12.6 Plants
2.13-2.14 The halogens chlorine and bromine
2.13 Chlorine
2.13.1 Methods
2.13.2 Hydrosphere
2.13.3 Mantle-Derived Rocks
2.13.4 Applications in the Environment
2.14 Bromine
2.15 Alkali Elements(potassium, rubidium)
2.15 Potassium
2.15.1 Mineral isotope fractionations
2.15.2 Magmatic environment
2.15.3 Weathering environment
2.16 Rubidium
2.17 Titanium
2.17.1 Magmatic fractionations
2.18 Vanadium
2.18.1 High-temperature fractionations
2.18.2 Low-temperature fractionations
2.19 Chromium
2.19.1 Mantle Rocks
2.19.2 River and ocean water
2.19.3 Carbonates
2.19.4 Paleo Redox Proxy2.19.5 Anthropogenic Cr in the Environment
2.20 Iron
2.20.1 Analytical Methods
2.20.2 Isotope Equilibrium Studies
2.20.3 Meteorites 2.20.4 Igneous Rocks2.20.5 Sediments
2.20.6 Ocean and River Water
2.20.7 Plants
2.21 Nickel
2.21.1 Meteorites and Mantle Derived Rocks
2.21.2 Water
2.21.3 Plants
2.22 Copper
2.22.1 Magmatic Rocks
2.22.2 Ore Deposits
2.22.3 Low-Temperature Fractionations
2.22.4 Water
2.22.5 Plants
2.23 Zinc
2.23.1 Fractionations during Evaporation
2.23.2 Mantle Derived Rocks
2.23.3 Ore Deposits
2.23.4 Ocean
2.23.5 Plants and Animals2.23.6 Anthropogenic Contamination
2.24 Gallium
2.25 Germanium
2.25.1 Ore deposits
2.25.2 Hydrosphere
2.26-2.27 Selenium and Tellurium
2.26 Selenium
2.26.1 Fractionation Processes
2.26.2 Natural variations at high temperatures
2.26.3 Ocean
2.27 Tellurium
2.28 Zirconium
2.29 Molybdenum
2.29.1 Magmatic Rocks
2.29.2 Molybdenites2.29.3 Sediments
2.29.4 Palaeoredox Proxy
2.30 Silver
2.31 Cadmium 2.31.1 Extraterrestrial Materials
2.31.2 Marine Environment
2.31.3 Ore deposits and anthropogenic Pollution
2.32 Tin
2.32.1 Magmatic rocks
2.32.2 Ore deposits
2.32.3 Tin in the environment
2.33 Antimony
2.34-2.37 Rare Earth Elements
2. 34 Cerium
2.35 Neodymium
2.36 Europium
2.37 Heavy Rare Earth Elements
2.38 Rhenium
2.39 Tungsten
2.40-2.44 Platinum Group Elements (PGEs)
2.40 Palladium
2.41 Platinum
2.42 Ruthenium
2.43 Iridium
2.44 Osmium
2.45 Mercury
2.45.1 MDF and MIF Fractionation Processes
2.45.2 Igneous rocks and ore deposits
2.45.3 Sediments
2.45.4 Environmental Pollutant
2.46 Thallium 2.46.1 Igneous Rocks
2.46.2 Fractionations in the Ocean
2.47 Uranium
2.47.1 Fractionation Processes
2.47.2 Mantle Derived Rocks
2.47.3 Ore Deposits
2.47.4 Rivers and the Ocean
2.47.5 Paleoredox Proxy
2.48 References
3 Variations of Stable Isotope Ratios in Nature
3.1 Extraterrestrial Materials
3.1.1 Chondrites
3.1.1.1 Oxygen
3.1.1.2 Hydrogen
3.1.1.3 Carbon
3.1.1.4 Nitrogen
3.1.1.5 Sulfur
3.1.1.6 Metals
3.1.1.7 Meteorite-Earth relationship
3.1.2 The Moon
3.1.2.1 Oxygen
3.1.2.2 Hydrogen
3.1.2.3 Other volatile elements
3.1.3 Mars
3.1.3.1 Oxygen
3.1.3.2 Hydrogen
3.1.3.3 Carbon
3.1.3.4 Sulfur
3.1.4 Venus
3.2 Mantle
3.2.1 Oxygen
3.2.2 Hydrogen
3.2.3 Carbon
3.2.4 Nitrogen
3.2.5 Sulfur
3.2.6 Stable Isotope Composition of the Core
3.3 Magmatic Rocks
3.3.1 Fractional Crystallization
3.3.2 Differences between Volcanic and Plutonic Rocks
3.3.3 Low Temperature Alteration Processes
3.3.4 Assimilation of Crustal Rocks 3.3.5 Glasses from Different Tectonic Settings3.3.5.1 Oxygen
3.3.5.2 Hydrogen
3.3.5.3 Carbon
3.3.5.4 Nitrogen
3.3.5.5 Sulfur
3.3.6 Magnesium and Iron (new figure)3.3.7 Lithium and Boron
3.3.8 Ocean crust3.3.9 Granitic Rocks
3.3.9.1 Whole-rock oxygen
3.3.9.2 Non-traditional isotopes
3.3.9.3 Zircon
3.3.10 Volatiles in Magmatic Systems
3.3.10.1 Water
3.3.10.2 Carbon
3.3.10.3 Nitrogen
3.3.10.4 Sulfur
3.3.11 Isotope Thermometers in Geothermal Systems
3.4 Metamorphic Rocks
3.4.1 Contact Metamorphism
3.4.2 Regional Metamorphism
3.4.3 Subduction zone metamorphism
3.4.4 Lower Crustal Rocks3.4.5 Thermometry
3.5 Ore Deposits and Hydrothermal Systems
3.5.1 Origin of Ore Fluids
3.5.1.1 Magmatic Water
3.5.1.2 Metamorphic Water
3.5.1.3 Formation Waters
3.5.2 Wall-Rock Alteration
3.5.3 Fossil Hydrothermal Systems
3.5.4 Hydrothermal Carbonates
3.5.5 Sulfur Isotope Composition of Ore Deposits
3.5.5.1 The Importance of fO2 and pH3.5.5.2 Magmatic Ore Deposits
3.5.5.3 Porphyry Copper Deposits
3.5.5.4 Recent and Fossil Sulfide Deposits at Mid-Ocean Ridges
3.5.5.5 Biogenic Deposits
3.5.5.6 Metamorphosed Deposits
3.5.6 Metal Isotopes in ore deposits (including new figure)
3.5.6.1 Copper
3.5.6.2 Iron
3.5.6.3 Zinc3.6 Hydrosphere
3.6.1 Meteoric Water—General Considerations
3.6.1.1 δ2H - δ18 O Relationship, Deuterium (d) - Excess
3.6.1.2 δ17O-δ18 O Relationships, 17O Excess
3.6.1.3 Meteoric Waters in the Past
3.6.2 Ice Cores3.6.3 Groundwater
3.6.4 Rivers
3.6.5 Isotope Fractionations during Evaporation
3.6.6 Ocean Water3.6.6.1 Oxygen and hydrogen isotopes
3.6.6.2 Metal isotopes3.6.7 Pore Waters
3.6.8 Formation Water
3.6.9 Water in Hydrated Salt Minerals
3.7 The Isotopic Composition of Dissolved and Particulate
Compounds in Ocean and Fresh Waters
3.7.1 Carbon Species in Water
3.7.1.1 Bicarbonate in Ocean Water
3.7.1.2 Particulate Organic Matter (POM)
3.7.1.3 Carbon Isotope Composition of Pore Waters
3.7.1.4 Carbon in Fresh Waters
3.7.2 Silicon
3.7.3 Nitrogen
3.7.4 Oxygen
3.7.5 Sulfate
3.7.6 Phosphate
3.8 Isotopic Composition of the Ocean during Geologic History
3.8.1 Oxygen
3.8.2 Carbon
3.8.3 Sulfur
3.8.4 Lithium
3.8.5 Boron
3.8.6 Calcium3.9 Atmosphere
3.9.1 Atmospheric Water Vapour 3.9.2 Nitrogen
3.9.2.1 Nitrous Oxide
3.9.3 Oxygen
3.9.3.1 Evolution of Atmospheric Oxygen
3.9.4 Carbon Dioxide 3.9.4.1 Carbon 3.9.4.2 Oxygen 3.9.4.3 Long Term Changes in the CO2 Concentration3.9.5 Carbon Monoxide
3.9.6 Methane
3.9.7 Hydrogen
3.9.8 Sulfur
3.9.9 Perchlorate
3.10 Biosphere
3.10.1 Living Organic Matter
3.10.1.1 Bulk Carbon
3.10.1.2 Position Specific Isotope Composition
3.10.1.3 Hydrogen
3.10.1.4 Oxygen
3.10.1.5 Nitrogen
3.10.1.6 Sulfur
3.10.1.7 Metals in plants
3.10.2 Indicators of Diet and Metabolism
3.10.3 Tracing Anthropogenic Organic Contaminant Sources3.10.4 Marine versus Terrestrial Organic Matter
3.10.5 Fossil Organic Matter
3.10.6 Oil
3.10.7 Coal
3.10.7.1 Black Carbon
3.10.8 Natural Gas
3.10.8.1 Biogenic Gas
3.10.8.2 Thermogenic Gas
3.10.8.3 Abiogenic Methane
3.10.8.4 Isotope Clumping in Methane
3.10.8.5 Nitrogen in Natural Gas
3.10.8.6 Isotope Signatures of Early Life
3.11 Sedimentary Rocks
3.11.1 Fractionations during Weathering
3.11.2 Clastic Sediments
3.11.3 Clay Minerals
3.11.4 Biogenic Silica and Cherts
3.11.4.1 Biogenic Silica
3.11.4.2 Cherts
3.11.5 Marine Carbonates
3.11.5.1 Oxygen
3.11.5.2 Carbon
3.11.6 Diagenesis
3.11.6.1 Burial Pathway
3.11.6.2 Meteoric Pathway
3.11.7 Limestones
3.11.7.1 Carbon isotope stratigraphy
3.11.8 Dolomites
3.11.9 Freshwater Carbonates
3.11.10 Phosphates
3.11.11 Iron Oxides
3.11.11.1 Oxygen
3.11.11.2 Iron
3.11.11.3 Iron-Manganese crusts
3.11.12 Sedimentary Sulfur and Pyrite
3.11.12.1 Sulfur
3.11.12.2 Pyrite
3.12 Palaeoclimatology
3.12.1 Continental Records
Jochen Hoefs has been working in the field of stable isotope geochemistry of the elements hydrogen, lithium, carbon, oxygen and sulfur since 1965. His main scientific interests include the stable isotope geochemistry of the mantle and lower crust, the genesis of basaltic and granitic magmas, water/rock interactions under hydrothermal conditions, the history of the ocean and the atmosphere and the application of stable isotopes to environmental problems. He has published more than 200 scientific papers, mostly in international journals. He authored the first edition of this textbook in 1973 and updates the textbook regularly.
This classic textbook is an introduction to the systematics and the use of stable isotopes in geosciences. It is subdivided into three parts: i) theoretical and experimental principles, ii) fractionation processes of light and heavy elements, iii) the natural variations of geologically important reservoirs. Since the publication of the previous edition improvements in multi-collector ICP mass-spectrometry have increased the ability to measure isotope ratios with very high precision for many elements of the periodic table. The amount of published data has increased tremendously in the last years; thus, conclusions based on a limited database are now better constrained. In this new edition, therefore, 47 elements with resolvable natural variations in isotope composition are discussed. This increase of elements, together with advances in the calculation of equilibrium isotope fractionation using ab initio methods, has led to an unbelievable rise of publications, making substantial major revisions and extensions of the last edition necessary. Many new references have been added, which enable quick access to recent literature.
1997-2024 DolnySlask.com Agencja Internetowa