• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Single-Particle Structure of 29Mg on the Approach to the N = 20 Island of Inversion » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Single-Particle Structure of 29Mg on the Approach to the N = 20 Island of Inversion

ISBN-13: 9783031191183 / Angielski / Twarda / 2022 / 147 str.

Patrick T. MacGregor
Single-Particle Structure of 29Mg on the Approach to the N = 20 Island of Inversion Patrick T. MacGregor 9783031191183 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Single-Particle Structure of 29Mg on the Approach to the N = 20 Island of Inversion

ISBN-13: 9783031191183 / Angielski / Twarda / 2022 / 147 str.

Patrick T. MacGregor
cena 645,58 zł
(netto: 614,84 VAT:  5%)

Najniższa cena z 30 dni: 616,85 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
inne wydania

The nuclear shell model has had much success when describing nuclear structure. It is able to describe the single-particle states of nuclei, and gives understanding as to how nuclear structure evolves as the number of nucleons changes in a nucleus. This led to the discovery of the so-called magic numbers, which designate particularly stable configurations of protons and neutrons in nuclei.With the advent of radioactive ion beams, it has become possible to probe exotic nuclei to test current theories of nuclear structure. These investigations have led to the discovery of exotic nuclear phenomena, with structures different to those found in stable nuclei. One of these is the N=20 island of inversion, where configurations that appear in stable nuclei become less bound than more exotic particle-hole configurations across a shell gap. Another is the weakening of the magic N=20 shell gap to N=16 as the number of protons is reduced in this isotonic chain.Of particular interest are the magnesium isotopes, which exhibit a swift transition into the island of inversion with 29Mg lying outside and 31Mg lying inside. In addition, 29Mg lies one neutron outside N=16, so is also able to give insight on the weakening of the N=16 shell gap.Mapping this region of the chart of nuclides helps in the understanding of the evolution of this nuclear structure. A useful probe for this task is single-particle transfer reactions. However, these reactions have been hindered by low yields from radioactive ion beams, as well as suffering from kinematic effects that obscure the states that need to be observed. The ISOLDE Solenoidal Spectrometer (ISS), that measures these transfer reactions in a solenoidal magnetic field, was designed to counteract these effects. With the high-yield radioactive ion beams at ISOLDE, CERN, these transfer reactions became viable.Therefore, the nuclear structure of 29Mg was probed using the d(28Mg,p) reaction using this device. This work marks the first measurement using the ISOLDE Solenoidal spectrometer and the first time that a solenoidal spectrometer has been used at an ISOL radioactive beam facility. The measurements highlight the interplay of nucleon-nucleon interactions and the geometry of the nuclear potential in driving observed trends in single-particle structure, in particular the changes in closed shells towards doubly magic 24O

The nuclear shell model has had much success when describing nuclear structure. It is able to describe the single-particle states of nuclei, and gives understanding as to how nuclear structure evolves as the number of nucleons changes in a nucleus. This led to the discovery of the so-called magic numbers, which designate particularly stable configurations of protons and neutrons in nuclei.With the advent of radioactive ion beams, it has become possible to probe exotic nuclei to test current theories of nuclear structure. These investigations have led to the discovery of exotic nuclear phenomena, with structures different to those found in stable nuclei. One of these is the N=20 island of inversion, where configurations that appear in stable nuclei become less bound than more exotic particle-hole configurations across a shell gap. Another is the weakening of the magic N=20 shell gap to N=16 as the number of protons is reduced in this isotonic chain.Of particular interest are the magnesium isotopes, which exhibit a swift transition into the island of inversion with 29Mg lying outside and 31Mg lying inside. In addition, 29Mg lies one neutron outside N=16, so is also able to give insight on the weakening of the N=16 shell gap.Mapping this region of the chart of nuclides helps in the understanding of the evolution of this nuclear structure. A useful probe for this task is single-particle transfer reactions. However, these reactions have been hindered by low yields from radioactive ion beams, as well as suffering from kinematic effects that obscure the states that need to be observed. The ISOLDE Solenoidal Spectrometer (ISS), that measures these transfer reactions in a solenoidal magnetic field, was designed to counteract these effects. With the high-yield radioactive ion beams at ISOLDE, CERN, these transfer reactions became viable.Therefore, the nuclear structure of 29Mg was probed using the d(28Mg,p) reaction using this device. This work marks the first measurement using the ISOLDE Solenoidal spectrometer and the first time that a solenoidal spectrometer has been used at an ISOL radioactive beam facility. The measurements highlight the interplay of nucleon-nucleon interactions and the geometry of the nuclear potential in driving observed trends in single-particle structure, in particular the changes in closed shells towards doubly magic 24O   

Kategorie:
Nauka, Fizyka
Kategorie BISAC:
Science > Fizyka jądrowa
Technology & Engineering > Measurement
Science > Spectroscopy & Spectrum Analysis
Wydawca:
Springer
Seria wydawnicza:
Springer Theses
Język:
Angielski
ISBN-13:
9783031191183
Rok wydania:
2022
Dostępne języki:
Numer serii:
000416125
Ilość stron:
147
Oprawa:
Twarda

Introduction.- The Shell Model.- Transfer Reactions and Reaction Theory.- Experimental Details for the d(28Mg,p)29Mg Reaction.- Analysis of the d(28Mg,p)29Mg Experiment.- Discussion of the d(28Mg,p)29Mg Experiment and Conclusions.- Appendix: Extracting Angles and Excitation Energy in ISS using Relativistic Kinematics.- Appendix: The Rate of Change of Centre-of-Momentum Angle with Laboratory Angle.- Appendix: Evolution of Cuts used in ISS for the d(28Mg,p)29Mg Experiment.- Appendix: Fitting Angular Distributions.- Appendix: Cross Section Data for 29Mg.

Patrick T. MacGregor is a nuclear-structure physicist, probing exotic nuclear systems primarily using transfer reactions. He completed his PhD in experimental nuclear physics at The University of Manchester in 2021, investigating the single-particle structure of the neutron-rich 29Mg, the results of which are written in this volume. This details the results from the first experiment at the ISOLDE Solenoidal Spectrometer (ISS), a novel device at the CERN facility that is able to study exotic nuclear systems. This work was published in Physical Review C 104, L051301 (2021). He is an experienced user of this device, and has supported other experimental campaigns that use it (see, for example, T. L. Tang et al., Physical Review Letters 124, 062502 (2020)).

Currently, he is pursuing postdoctoral research using transfer reactions to extract the occupancies and vacancies of the A=124 neutrinoless double beta decay system. Additionally, he is continuing his research on the magnesium isotopes by analysing data from an analagous reaction performed at the ISS to investigate the single-particle structure of 31Mg. Outside of work, he enjoys spending time with his wife, Ally, who has brought colour to his otherwise boring lifestyle.


This work focuses on the evolution of single-particle structure in a region of the nuclear chart rich with exotic nuclear structure. The author has led the analysis of the 28Mg(d,p)29Mg reaction, measured with the ISOLDE Solenoidal Spectrometer (ISS) at the ISOLDE facility, CERN. This was the first measurement made using this device and the first time that a solenoidal spectrometer has been used at an ISOL radioactive beam facility. Significant attention is paid to optimizing methods of analysing direct nuclear reactions taking place in solenoidal fields and, as part of this, the author has developed his own analysis codes and simulations. The thesis gives an extremely comprehensive and well-written description of this novel system and provides a canonical reference for ISS that will be of great use to researchers and students, as well as presenting some significant scientific results focused on the N=20 "island of inversion", a region of nuclides of great current interest in nuclear physics.

 



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia