ISBN-13: 9783038421931 / Angielski / Twarda / 2016 / 236 str.
Cells play significant roles in our day to day life. However, the interactions of cells, the cellular responses of organelles to molecules, and their intracellular behaviour, are still not fully understood. To better understand the physiological interactions among molecules, organelles, and cells, the ensemble measurement of (on average, millions of) cells cannot provide detailed information. However, for example, research concerning the differentiation behaviors of stem cells or the metastatic processes of tumour initiation requires detailed information. Understanding genomic sequence information at a single cell level can promote an understanding of how individual parts of a cell are integrated in time and space to form dynamic cellular processes. The relationship between cellular heterogeneity and signaling pathway regulation may result in an understanding of disease states that can potentially drive therapeutic interventions. Thus single cell analysis (SCA) has been emerging as a powerful method of investigating exciting new insights into genomics, fluxomics, proteomics, and systems biology.
Cells play significant roles in our day to day life. However, the interactions of cells, the cellular responses of organelles to molecules, and their intracellular behaviour, are still not fully understood. To better understand the physiological interactions among molecules, organelles, and cells, the ensemble measurement of (on average, millions of) cells cannot provide detailed information. However, for example, research concerning the differentiation behaviors of stem cells or the metastatic processes of tumour initiation requires detailed information. Understanding genomic sequence information at a single cell level can promote an understanding of how individual parts of a cell are integrated in time and space to form dynamic cellular processes. The relationship between cellular heterogeneity and signaling pathway regulation may result in an understanding of disease states that can potentially drive therapeutic interventions. Thus single cell analysis (SCA) has been emerging as a powerful method of investigating exciting new insights into genomics, fluxomics, proteomics, and systems biology.