• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning

ISBN-13: 9781489977311 / Angielski / Miękka / 2016 / 508 str.

Abhijit Gosavi
Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning Gosavi, Abhijit 9781489977311 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning

ISBN-13: 9781489977311 / Angielski / Miękka / 2016 / 508 str.

Abhijit Gosavi
cena 484,18 zł
(netto: 461,12 VAT:  5%)

Najniższa cena z 30 dni: 443,35 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
Kategorie:
Nauka, Ekonomia i biznes
Kategorie BISAC:
Mathematics > Prawdopodobieństwo i statystyka
Medical > Medycyna
Technology & Engineering > Automation
Wydawca:
Springer
Seria wydawnicza:
Operations Research/Computer Science Interfaces
Język:
Angielski
ISBN-13:
9781489977311
Rok wydania:
2016
Wydanie:
Softcover Repri
Numer serii:
000044039
Ilość stron:
508
Waga:
0.74 kg
Wymiary:
23.39 x 15.6 x 2.74
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

Background.- Simulation basics.- Simulation optimization: an overview.- Response surfaces and neural nets.- Parametric optimization.- Dynamic programming.- Reinforcement learning.- Stochastic search for controls.- Convergence: background material.- Convergence: parametric optimization.- Convergence: control optimization.- Case studies.

Abhijit Gosavi is a leading international authority on reinforcement learning, stochastic dynamic programming and simulation-based optimization. The first edition of his Springer book “Simulation-Based Optimization” that appeared in 2003 was the first text to have appeared on that topic. He is regularly an invited speaker at major national and international conferences on operations research, reinforcement learning, adaptive/approximate dynamic programming, and systems engineering.

He has published more than fifty journal and conference articles – many of which have appeared in leading scholarly journals such as Management Science, Automatica, INFORMS Journal on Computing, Machine Learning, Journal of Retailing, Systems and Control Letters and the European Journal of Operational Research. He has also authored numerous book chapters on simulation-based optimization and operations research. His research has been funded by the National Science Foundation, Department of Defense, Missouri Department of Transportation, University of Missouri Research Board and industry. He has consulted extensively for the U.S. Department of Veterans Affairs and the mass media as a statistical/simulation analyst. He has received teaching awards from the Institute of Industrial Engineers.

He currently serves as an Associate Professor of Engineering Management and Systems Engineering at Missouri University of Science and Technology in Rolla, MO. He holds a masters degree in Mechanical Engineering from the Indian Institute of Technology and a Ph.D. in Industrial Engineering from the University of South Florida. He is a member of INFORMS, IIE and ASEE.

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques – especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms.

Key features of this revised and improved Second Edition include:

· Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search, and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search, and meta-heuristics (simulated annealing, tabu search, and genetic algorithms)

· Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for  discounted, average, and total reward performance metrics

· An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata

· A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online), and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations

Themed around three areas in separate sets of chapters – Static Simulation Optimization, Reinforcement Learning, and Convergence Analysis – this book is written for researchers and students in the fields of engineering (industrial, systems, electrical, and computer), operations research, computer science, and applied mathematics.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia